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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-2 LINEAR ALGEBRA 
 

Introduction to Block 

Linear algebra is the most applicable area of mathematics. It is one of 

the fields, that is accepted universally to be the prerequisite to be the in-

depth understanding of the machine learning. This field is considered to 

be the mathematics of data and is especially used in the field of statistics, 

and used as a tool in Fourier series, computer graphics and so on. It is the 

study of vector spaces, lines and planes, and some mappings that are 

required to perform the linear transformations.  It includes vectors, 

matrices and linear functions. It is the study of linear sets of equations 

and its transformation properties. 

In this block we are going to explore the concept of Dual space and 

linear transformation. Comprehend the inner product space and its 

applications. Enumerate Quadratic and Bilinear forms. Understand in 

details about the Jordan Cannonical Form. Comprehend the Annihilating 

polynomials, diagonal forms, triangular forms. Understand the concepts 

of Direct Sum Decompositions, Invariant Direct sums & The Primary 

Decomposition Theorem. 

Jordan canonical form is a representation of a linear 

transformation over a finite-dimensional complex vector space by a 

particular kind of upper triangular matrix. Every such linear 

transformation has a unique Jordan canonical form, which has useful 

properties: it is easy to describe and well-suited for computations. 

Certain terms like monic polynomial, minimal polynomial as well as 

annihilating polynomial and characteristic polynomial are clarified in 

details. 
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UNIT-8: LINEAR 

TRANSFORMATION AND DUAL 

SPACE 
 

STRUCTURE 

8.0 Objective 

8.1 Introduction 

8.2 Matrix of Linear Transformation 

8.3 Similarity of Matrices 

8.4 Dual Space 

8.5 Let‘s sum up 

8.6 Keywords 

8.7 Questions for review 

8.8 Suggested Readings 

8.9 Answers to Check your Progress 

8.0 OBJECTIVE 
 

Understand the concept of Matrix of Linear Transformation 

Comprehend the Similarity of Matrices 

Understand the concept of Dual Space 

8.1 INTRODUCTION 
 

In this section, we prove that if   and   are vector spaces over F with 

dimensions n and m, respectively, then any T ∈        corresponds to 

a set of m × n matrices. Before proceeding further, the readers should 

recall the results on ordered basis. 
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8.2 MATRIX OF LINEAR 

TRANSFORMATION 
 

So, let   = (v1, . . . , vn) and   = (w1, . . . , wm) be ordered bases of   

and  , respectively. Also, let   = [v1, . . . , vn] and   = [w1, . . . , wm] 

be the basis matrix of   and  , respectively.  

Then, v =      and w =      , for all v ∈   and w ∈ W. For   ∈

        and v ∈   , 

 

                                          

                             

                                   

                                    

 

Therefore,         =                                  as a vector in   

has a unique expansion 

in terms of basis elements. Note that the matrix [               

           ], denoted          

is an m × n matrix and is unique with respect to the ordered basis B as 

the i-th column equals 

[T (vi)]B, for 1 ≤ i ≤ n. So, we immediately have the following definition 

and result. 

Definition 8.2.1. [Matrix of a Linear Transformation] Let A = (v1, . . . 

, vn) and B = 

(w1, . . . , wm) be ordered bases of V and W, respectively. If   ∈

        then the matrix 

T [A, B] is called the coordinate matrix of T or the matrix of the linear 

transformation 

T with respect to the basis A and B, respectively.  

When there is no mention of bases, we take it to be the standard ordered 

bases and denote the corresponding matrix by [T ]. 

Note that if c is the coordinate vector of an element v ∈ V then, T [A, B]c 

is the coordinate 

vector of T (v). That is, the matrix T [A, B] takes coordinate vector of the 
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domain points to the 

coordinate vector of its images. 

Theorem 8.2.2. Let A = (v1, . . . , vn) and B = (w1, . . . , wm) be ordered 

bases of   and  , respectively. If   ∈         then there exists a 

matrix S ∈ Mm×n( ) with  

 

               = [                          ],  and [T (x)]B = S [x]A, 

for all x ∈ V. 

 

Remark 8.1.3. Let   and   be vector spaces over   with ordered bases 

A1 = (v1, . . . , vn) 

and B1 = (w1, . . . , wm), respectively. Also, for α ∈   with α ≠ 0, let A2 

= (αv1, . . . , αvn) and 

B1 = (αw1, . . . , αwm) be another set of ordered bases of V and W, 

respectively. Then, for any   ∈         

 

          [           
                  

]

            
                

               

Thus, we see that the same matrix can be the matrix representation of T 

for two different pairs 

of bases. 

 

Figure 8.2: Counter-clockwise Rotation by an angle θ  

 

Example: 1. Let T ∈ L(ℝ2
) represent a counterclockwise rotation by an 

angle θ, 0 ≤ θ < 2π. Then, using Figure 8.1, x = OP cos α and y = OP sin 

α, verify that 
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Or equivalently, the matrix in the standard ordered basis of ℝ2
 equals  

 

(A) 

 

 

 

2. Let T ∈  (ℝ2
) with T ((x, y)

T
 ) = (x + y, x − y)

T
 . 

 

3. Let A = (e1, e2) and B = (e1 + e2, e1 − e2) be two ordered bases of ℝ2
. 

Then Compute T [A, A] and T [B, B], where T ((x, y)
T
 ) = (x + y, x − 2y)

T
 

. 
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Example [Finding T from T [A, B]] 

 

1. Let  and   be vector spaces over   with ordered bases A and B, 

respectively. Suppose 

we are given the matrix S = T [A, B]. Then determine the corresponding 

  ∈          

 

Solution: Let B be the basis matrix corresponding to the ordered basis B. 

Then, using 

Equation and Theorem 8.1.2, we see that 

T (v) = B[T (v)]B = BT [A, B][v]A = BS[v]A. 

2. In particular, if V = W = Fn and A = B then we see that 

T (v) = BSB−1v.         

 (B) 

8.3 SIMILARITY OF MATRICES 
 

Let   be a vector space over   with dim( ) = n and ordered basis B. 

Then any   ∈       

corresponds to a matrix in Mn( ). What happens if the ordered basis 

needs to change? We answer this in this subsection. 

 

Fig 8.3: Composition of Linear Transformations 

 

Theorem 8.3.1 (Composition of Linear Transformations). Let V, W and 

Z be finite dimensional vector spaces over F with ordered bases B, C and 

D, respectively. Also, let T ∈ L(V, W) 

and S ∈ L(W, Z). Then S ◦ T =    ∈         (see Figure 8.2). Then 

 

     (ST ) [B, D] = S[C, D] · T [B, C]. 
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Proof. Let B = (u1, . . . , un), C = (v1, . . . , vm) and D = (w1, . . . , wp) 

be the ordered bases of 

V, W and Z, respectively. Then using Theorem 4.3.2, we have 

(ST )[B, D] = [[ST (u1)]D , . . . , [ST (un)]D] = [[S(T (u1))]D , . . . , [S(T 

(un))]D] 

= [S[C, D] [T (u1)]C , . . . , S[C, D] [T (un)]C] 

= S[C, D] [[T (u1)]C , . . . , [T (un)]C] = S[C, D] · T [B, C]. 

Hence, the proof of the theorem is complete. 

As an immediate corollary of Theorem 4.4.1 we have the following 

result. 

Theorem 8.3.2 (Inverse of a Linear Transformation). Let V is a vector 

space with dim(V) = n. 

If T ∈ L( ) is invertible then for any ordered basis B and C of the 

domain and co-domain, 

respectively, one has (T [C, B])−1 = T −1[B, C]. That is, the inverse of 

the coordinate matrix of 

T is the coordinate matrix of the inverse linear transform. 

Proof. As T is invertible, TT 
−1

 = Id. Thus Theorem 8.2.1 imply  

 

In= Id[B, B] = (TT 
−1

)[B, B] = T [C, B] · T 
−1

[B, C]. 

 

Hence, by definition of inverse, T 
−1

[B, C] = (T [C, B])
−1

 and the 

required result follows. 

 

Figure 8.3: T [C, C] = Id[B, C] · T [B, B] · Id[C, B] - Similarity of 

Matrices 
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Let   be a finite dimensional vector space. Then, the next result answers 

the question ―what 

happens to the matrix T [B, B] if the ordered basis B changes to C?‖ 

 

Theorem 8.2.3. Let B = (u1, . . . , un) and C = (v1, . . . , vn) be two 

ordered bases of V and Id 

the identity operator. Then, for any linear operator T ∈  ( ) 

       T [C, C] = Id[B, C] · T [B, B] · Id[C, B] = (Id[C, B])−1 · T [B, B] · 

Id[C, B].           (A) 

 

Proof. As Id is an identity operator, T [B, C] as (Id ◦ T ◦ Id)[B, C]  (see 

Figure 8.3 for clarity). 

 

Thus, using Theorem 8.3.1, we get 

 

 T [B, C] = (Id ◦ T ◦ Id)[B, C] = Id[B, C] · T [B, B] · Id[C, B]. 

 

Hence, using Theorem 8.2.2, the required result follows. 

 

Let   be a vector space and let   ∈        If dim( ) = n then every 

ordered basis B of V gives an n × n matrix T [B, B]. So, as we change the 

ordered basis, the coordinate matrix of T changes. Theorem 8.2.1 tells us 

that all these matrices are related by an invertible matrix. 

Thus, we are led to the following definitions. 

 

Definition 8.3.4. [Change of Basis Matrix] Let   be a vector space with 

ordered bases B 

and C. If   ∈       then, T [C, C] = Id[B, C] · T [B, B] · Id[C, B]. The 

matrix Id[B, C] is called the change of basis matrix from B to C. 

 

Definition 8.3.5. [Similar Matrices] Let X, Y ∈ Mn(C). Then, X and Y 

are said to be 

similar if there exists a non-singular matrix P such that P −1XP = Y ⇔ 

XP = PY . 
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Example :Let B = 1 + x, 1 + 2x + x2, 2 + x and C = 1, 1 + x, 1 + x + x2 

be ordered 

bases of R[x; 2]. Then, verify that Id[B, C]−1 = Id[C, B], as 

Check Your Progress 

 

1.  Explain matrix of linear transformation  

 

2.  State Composition of Linear Transformations with proof  

 

3. Define  

(a)- Change of Basis 

(b) Similar Matrices 

 

 

8.4 DUAL SPACE* 
 

Definition 8.4.1. [linear Functional] Let   be a vector space over F. 

Then a map T ∈ L(V, F) is called a linear functional on  . 

 

Definition 8.4.2. [Dual Space] Let   be a vector space over F. Then 

       is called the 

dual space of V and is denoted by V*. The double dual space of  , 
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denoted V**, is the dual 

space of V*. 

We first give an immediate corollary of Theorem 4.2.17. 

Corollary 8.4.3. Let   and   be vector spaces over F with dim   = n 

and dim   = m. 

 

1. Then          Fmn
. Moreover, {fij|1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis of 

      . 

 

2. In particular, if W = F then        = V* * =  n
. Moreover, if {v1, . . 

. , vn} is a basis of 

V then the set {fi|1 ≤ i ≤ n} is a basis of V*, where  

 

 

 

 

The basis {fi|1 ≤ i ≤ n} is called the dual basis of  n
. 

 

 So, we see that  *. can be understood through a basis of  . Thus, one 

can understand  **. 

again via a basis of  *. But, the question arises ―can we understand it 

directly via the vector 

space V itself?‖ We answer this in affirmative by giving a canonical 

isomorphism from V to  **. 

 

To do so, for each v ∈  , we define a map Lv :   * →   by Lv(f) = f(v), 

for each f ∈  *. Then 

Lv is a linear functional as 

   

  Lv(αf + g) = (αf + g) (v) = αf(v) + g(v) = αLv(f) + Lv(g). 

 

So, for each v ∈   , we have obtained a linear functional Lv ∈  **.Note 

that, if v   w then, L 

v ≠ Lw. Indeed, if Lv = Lw then, Lv(f) = Lw(f), for all f ∈  *. Thus, f(v) 
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= f(w), for all f ∈  *. That is, f(v − w) = 0, for each f ∈  *. Hence, we 

get v − w = 0, or equivalently, v = w. 

 

We use the above argument to give the required canonical isomorphism. 

Theorem 8.4.4. Let V be a vector space over F. If dim( ) = n then the 

canonical map 

T :   →  **.defined by T (v) = Lv is an isomorphism. 

 

Proof. Note that for each f ∈   *, 

 

Lαv+u(f) = f(αv + u) = αf(v) + f(u) = αLv(f) + Lu(f) = (αLv + Lu) (f). 

 

Thus, Lαv+u = αLv+Lu. Hence, T (αv+u) = αT (v)+T (u). Thus, T is a 

linear transformation. 

For verifying T is one-one, assume that T (v) = T (u), for some u, v ∈  . 

Then, Lv = Lu. Now, 

use the argument just before this theorem to get v = u. Therefore, T is 

one-one.Thus, T gives an inclusion (one-one) map from   to   **. 

Further, applying Corollary 8.3.3.2 to   *, gives dim(  **) = dim(  *) = 

n. Hence, the required result follows. 

Corollary 8.4.5. Let   be a vector space of dimension n with basis B = 

{v1, . . . , vn}. 

1. Then, a basis of   **, the double dual of  , equals D = {Lv1, . . . , 

Lvn}. Thus, for each 

T ∈   ** there exists x ∈ V such that T (f) = f(x), for all f ∈   *. Or 

equivalently, there 

exists x ∈    such that T = Tx. 

2. If C = {f1, . . . , fn} is the dual basis of  * defined using the basis B 

then D is indeed the dual basis of   ** obtained using the basis C of   *. 

Thus, each basis of   * is the dual basis of some basis of V. 

 

Proof. Part 1 is direct as T :   →   ** was a canonical inclusion map. 

For Part 2, we need to 
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show that 

which indeed holds true using Corollary 8.4.3.2. 

 

Let   be a finite dimensional vector space. Then Corollary 8.3.5 implies 

that the spaces   and   * are naturally dual to each other. 

We are now ready to prove the main result of this subsection. To start 

with, let   and   be vector spaces over F. Then, for each T ∈         

we want to define a map  ̂           

So, if g ∈  * then,  ̂(g) a linear functional from V to F. So, we need to 

be evaluate T b(g) at 

an element of V. Thus, we define T b(g)(v) = g (T (v)), for all v ∈ V. 

Now, we note that 

 ̂ ∈            as for every g, h ∈   , 

 

   ̂                                              

               ̂       ̂        

 

For all v ∈   implies that  ̂             ̂       ̂   . 

 

Theorem 8.4.6. Let   and   be two vector spaces over   with ordered 

bases A = (v1, . . . , vn) 

and B = (w1, . . . , wm), respectively. Also, let A* = (f1, . . . , fn) and B* 

= (g1, . . . , gm) be the 

corresponding ordered bases of the dual spaces   * and   *, 

respectively. Then, T b[B*, A*] = (T [A, B])T ,the transpose of the 

coordinate matrix T. 

Proof. Note that we need to compute  ̂ [B*, A*] = 

 [ ̂    ]        [ ̂     ]
    and prove that it equals the transpose of the 

matrix T [A, B]. So, let 
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Thus, to prove the required result, we need to show that 

(A) 

 

Now, recall that the functionals fi‘s and gj‘s satisfy  

 

 

 

 

for 1 ≤ t ≤ n and [gj(w1), . . . , gj(wm)] =   
 , a row vector with 1 at the j-

th place and 0, elsewhere. So, let B = [w1, . . . , wm] and evaluate  ̂ (gj) 

at vt‘s, the elements of A. 

Thus, the linear functional  ̂ (gj) and ∑      
 
   are equal at vt, for 1 ≤ t 

≤ n, the basis vectors 

of V. Hence  ̂ (gj) = ∑      
 
    which gives Equation (A). 

 

Remark 8.4.7 . The above proof of Theorem also shows the following. 
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1. For each T ∈        there exists a unique map T b ∈         such 

that 

 ̂ (g)(v) = g (T (v)) , for each g ∈ W*. 

2. The coordinate matrices T [A, B] and T b[B*, A*] are transpose of 

each other, where the ordered bases A* of    and B* of    correspond, 

respectively, to the ordered bases A of 

  and B of  . 

3. Thus, the results on matrices and its transpose can be re-written in the 

language a vector 

space and its dual space. 

 

Check Your Progress 

4. Define Dual space – 

 

 

5. Explain canonical isomorphism. 

 

8.5 LET’S SUM UP 
 

Application of vector space in matrix. Similarity of matrices and dual 

space concept has been clarified. 

 

8.6 KEYWORDS 
 

1. Evaluated --To evaluate an algebraic expression, you have to 

substitute a number for each variable and perform the arithmetic 

operations. 

2. Canonical - In mathematics and computer science, a canonical, 

normal, or standard form of a mathematical object is a standard way 

of presenting that object as a mathematical expression. 
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3. Change of Coordinates Matrix. A change of coordinates matrix, 

also called a transition matrix, specifies the transformation from one 

vector basis to another under a change of basis 

4. The domain is the group of numbers that can be entered into 

a function to create a valid output. 

8.7 QUESTION FOR REVIEW 
 

1. 1. Let T ∈ L(ℝ2
) represent the reflection about the line y = mx. Find [T 

]. 

2. Find the matrix of the linear transformations given below. 

1. Let B = x1, x2, x3 be an ordered basis of R3. Now, define T ∈ L(ℝ3
) by 

T (x1) = x2, 

T (x2) = x3 and T (x3) = x1. Determine T [B, B]. Is T invertible? 

3. Define T ∈ L(ℝ3
) by T ((x, y, z)T ) = (x + y + 2z, x − y − 3z, 2x + 3y 

+ z)T . Let B be the standard ordered basis and C = (1, 1, 1), (1, −1, 1), 

(1, 1, 2) be another ordered basis of ℝ3
.  

Then find 

(a) matrices T [B, B] and T [ℂ, ℂ]. 

(b) the matrix P such that P −1T [B, B] P = T [ℂ, ℂ]. 

4. Define T : ℂ3
 → ℂ by T ((x, y, z)T ) = x. Is it a linear functional? 

5. Let   be a vector space. Suppose there exists v ∈    such that f(v) = 0, 

for all f ∈   *. Then prove that v = 0. 

8.8 SUGGESTED READINGS 
1. K. Hauffman and R. Kunz, Linear Algebra, Pearson Education 

(INDIA), 2003. 

2.  G. Strang, Linear Algebra And Its Applications, 4th Edition, 

Brooks/Cole, 2006. 

3. S. Lang, Linear Algebra, Springer, 1989. 

4. David S. Dummit and Richard M. Foote, Abstract Algebra (3e), John 

Wiley and Sons. 
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5. R. Gallian Joseph, Contemporary Abstract Algebra, Narosa 

Publishing House. 

6. Thomas Hungerford, Algebra, Springer GTM. 

7. I.N. Herstein, Topics in Abstract Algebra, Wiley Eastern Limited.  

8. D.S. Malik, J.M. Mordesen, M.K. Sen, Fundamentals of Abstract 

Algebra, The McGraw-Hill Companies, Inc. 

8.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. [Provide definition and example-- 8.1.1] 

2. [Provide statement and proof – 8.2.1] 

3. Provide definition (a) – 8.2.4 & (b) – 8.2.5 

4. Provide definition –8.3.2 

5. Provide the statement of theorem and proof ---8.3.4
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UNIT 9: INNER PRODUCT SPACES 
 

STRUCTURE 

9.0 Objective 

9.1 Introduction 

9.2 Inner Product Space 

9.3 Cauchy Schwartz Inequality 

9.4 Angle Between Two Vectors 

9.5 Normed Linear Space 

9.6 Gram-Schmidt Orthonormalization Process 

9.7 Let‘s sum up 

9.8 Keywords 

9.9 Questions for review 

9.10 Suggested Readings 

9.11 Answers To Check Your Progress 

9.0 OBJECTIVE 
 

Understand the concept and meaning of Inner product space 

Enumerate Cauchy Schwartz Inequality 

Understand The Concept Of Angle Between Two Vectors And Normed 

Linear Space 

Understand The Background Of GRAM-SCHMIDT 

ORTHONORMALIZATION PROCESS 

9.1 INTRODUCTION 
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Recall the dot product in ℝ2
 and ℝ3

. Dot product helped us to compute 

the length of vectors and angle between vectors. This enabled us to 

rephrase geometrical problems in ℝ2
 and ℝ3

 in the language of vectors. 

We generalize the idea of dot product to achieve similar goal for a 

general vector space over ℝ or ℂ. So, in this chapter   will denote either 

ℝ or ℂ. 

 

9.2 INNER PRODUCT SPACE -

DEFINITION AND BASIC PROPERTIES 
 

Definition 9.2.1. [Inner Product] Let   be a vector space over  . An 

inner product over , denoted by h , i, is a map from   ×   to F 

satisfying 

 

1. 〈au + bv, w〉= a 〈   〉+ b 〈   〉 for all u, v, w ∈   and a, b ∈  , 

 

2. 〈   〉    〈   〉  the complex conjugate of hu, vi, for all u, v ∈   and 

 

3. 〈    〉 ≥ 0 for all u ∈  . Furthermore, equality holds if and only if u = 

0. 

Remark 9.2.2. Using the definition of inner product, we immediately 

observe that 

1. 〈     〉   〈    〉̅̅ ̅̅ ̅̅ ̅̅ ̅     ̅ 〈   〉̅̅ ̅̅ ̅̅ ̅̅     ̅ 〈   〉, for all α ∈   and v, w ∈ 

V. 

2. If 〈    〉     for all v ∈   then in particular 〈    〉 = 0. Hence, u = 0. 

 

Definition 9.2.3. [Inner Product Space] Let   be a vector space with an 

inner product 〈  〉 

Then, ( , 〈  〉) is called an inner product space (in short, IPS). 

Example. Examples 1 and 2 that appear below are called the standard 

inner product or the dot product on ℝn
 and ℂn

, respectively. Whenever 

an inner product is not clearly mentioned, it will be assumed to be the 

standard inner product. 

1. For u = (u1, . . . , un)
T
 , v = (v1, . . . , vn)

T
 ∈ ℝn

 define hu, vi = u1v1 + 

··· + unvn = v
T
 u. 
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Then, 〈  〉 is indeed an inner product and hence (ℝn
, 〈  〉 ) is an IPS. 

2. For u = (u1, . . . , un) , v = (v1, . . . , vn)  ∈ ℂn
 define 〈   〉= u1v1 + 

··· + unvn = v u. 

Then, (ℂn
, 〈  〉 ) is an IPS. 

 

9.3 CAUCHY SCHWARTZ INEQUALITY 
 

As 〈    〉  > 0, for all u ≠ 0, we use inner product to define length of a 

vector. 

Definition 9.3.1. [Length / Norm of a Vector] Let   be a vector space 

over F. Then, for any vector u ∈  , we define the length (norm) of u, 

denoted ||u|| = √〈   〉the positive square root. A vector of norm 1 is 

called a unit vector. Thus, 
 

     
 is called the unit vector in the direction 

of u. 

 

Example: 1. Let   be an IPS and u ∈  . Then, for any scalar α, ||αu|| = 

|α|.||u|| 

 

2. Let u = (1,−1, 2,−3)
T
 ∈ ℝ4

. Then, ||u|| = √                √  . 

Thus, 
 

√  
 u and  

 

√  
 u 

are vectors of norm 1. Moreover 
 

√  
 u is a unit vector in the direction of 

u. 

3. ||x + y||
2
 + ||x – y||

2 
= 2(||x||

2
 + ||y||

2
), for all x

T
 , y

T
 ∈ ℝn

. This equality 

is called the Parallelogram Law as in a parallelogram the sum of square 

of the lengths of the diagonals is equal to twice the sum of squares of the 

lengths of the sides 

 

4. Apollonius’ Identity: Let the length of the sides of a triangle be a, b, 

c ∈ ℝ and that of the median be d ∈ ℝ. 
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Theorem 9.3.2  (Cauchy-Bunyakovskii-Schwartz inequality). Let   be 

an inner product space 

over  . Then, for any u, v ∈   

 

      〈   〉   |   | |   |      (A) 

 

Moreover, equality holds in Inequality (A) if and only if u and v are 

linearly dependent. 

Furthermore, if u ≠ 0 then  

 

 

 

Proof. If u = 0 then Inequality (A) holds. Hence, let u ≤0. Then, by 

Definition 9.1.1.3, 〈              〉 ≥ 0 for all λ ∈   and v ∈   . In 

particular, for 

 

 

 

Or, in other words | 〈    〉|2 ≤ ||u||
2
||v||

2
 and the proof of the inequality 

is over. Now, note that equality holds in Inequality (A) if and only if ||λu 

+ v, λu + v||= 0, or equivalently, λu + v = 0. Hence, u and v are linearly 

dependent. Moreover, 

Corollary 9.3.3. Let x, y ∈ ℝn
. Then, 

 

 

 

Check your progress 
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1.  Define Inner Product and Inner Product Space  

 

2.  Explain length or norm of vector  

 

 

9.4 ANGLE BETWEEN TWO VECTORS 
 

Let   be a real vector space. Then, for u, v ∈  , the Cauchy-Schwartz 

inequality implies that 

−1 ≤ 
〈   〉

|   |     
≤ 1. We use this together with the properties of the cosine 

function to define the angle between two vectors in an inner product 

space. 

Definition 9.4.1. [Angle between Vectors] Let   be a real vector space. 

If θ ∈ [0, π] is the 

angle between u, v ∈   \ {0} then we define 

 

 

 

 

Example :1. Take (1, 0)
T
 , (1, 1)

T
 ∈ ℝ2

. Then, cos θ = 
 

√ 
. So θ = π/4. 

 

2. Take (1, 1, 0)
T
 , (1, 1, 1)

T
 ∈ ℝ3

. Then, angle between them, say β = 

cos
−1

   √  

3. Angle depends on the IP. Take 〈   〉= 2x1y1 + x1y2 + x2y1 + x2y2 

on ℝ2
. Then, angle 

between (1, 0)
T
 , (1, 1)

T
 ∈ ℝ2

 equals cos
−1  

√  
. 
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Figure A: Triangle with vertices A, B and C 

We will now prove that if A, B and C are the vertices of a triangle (see 

Figure A) and a, b and c, respectively, are the lengths of the 

corresponding sides then        
        

   
 . This in turn implies that 

the angle between vectors has been rightly defined. 

 

Lemma 9.4.2 Let A, B and C be the vertices of a triangle (see Figure 

5.1) with corresponding 

side lengths a, b and c, respectively, in a real inner product space   then 

 

       
        

   
 

 

Proof. Let 0, u and v be the coordinates of the vertices A, B and C, 

respectively, of the triangle ABC. Then,    ⃗⃗ ⃗⃗ ⃗⃗   = u,    ⃗⃗ ⃗⃗ ⃗⃗  = v and    ⃗⃗ ⃗⃗ ⃗⃗   = v − 

u. Thus, we need to prove that 

 

Now, by definition ||v−u||
2
 = ||v||

2
+||u||

2
−2 〈   〉and hence 

||v||
2
+||u||

2
−||v−u||

2
 = 2 〈   〉 

As 〈   〉= ||v|| ||u|| cos(A), the required result follows. 

 

Definition 9.4.3. [Orthogonality / Perpendicularity] Let   be an inner 

product space over ℝ. Then, 

1. the vectors u, v ∈   are called orthogonal/perpendicular if 〈   〉= 0. 

 

2. Let S ⊆  . Then, the orthogonal complement of S in  , denoted S⊥, 

equals 

   S⊥ = {v ∈  : 〈   〉= = 0, for all w ∈ S}. 

 

Example 1. 0 is orthogonal to every vector as 〈   〉= = 0 for all x ∈  . 
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2. If   is a vector space over ℝ or ℂ then 0 is the only vector that is 

orthogonal to itself. 

 

3.Let u = (1, 2)
T
 . What is u⊥ in ℝ2

? 

 

Solution: {(x, y)
T ∈ ℝ2

 | x + 2y = 0}.  

Is this Null(u)?  

Note that (2, −1)
T
 is a basis of u⊥ and for any vector x ∈ ℝ2

, 

 

Is a decomposition of x into two vectors, one parallel to u and the other 

parallel to u⊥? 

 

4. Fix u = (1, 1, 1, 1)
T
 , v = (1, 1, −1, 0)

T
 ∈ ℝ4

. Determine z, w ∈ ℝ4
 such 

that u = z + w with the condition that z is parallel to v and w is 

orthogonal to v. 

Solution: As z is parallel to v, z = kv = (k, k, −k, 0)
T
 , for some k ∈ ℝ. 

Since w is orthogonal to v the vector w = (a, b, c, d)
T
 satisfies a + b − c = 

0. Thus, c = a + b and  

 

  (1, 1, 1, 1)
T
 = u = z + w = (k, k, −k, 0)

T
 + (a, b, a + b, d)

T
 . 

Comparing the corresponding coordinates, gives the linear system d = 1, 

a + k = 1, b + k = 1 and a + b − k = 1 in the variables a, b, d and k. Thus, 

solving for a, b, d and k gives z =1/3 (1, 1, −1, 0)
T
 and w = 1/3 (2, 2, 4, 

3)
T
 . 

 

9.5 NORMED LINEAR SPACE 
 

To proceed further, recall that a vector space over ℝ or ℂ was a linear 

space. 

Definition 9.5.1 . [Normed Linear Space] Let   be a linear space. 

1. Then, a norm on   is a function f(x) = ||x||from   to R such that 
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(a) ||x|| ≥ 0 for all x ∈   and if ||x|| = 0 then x = 0. 

 

(b) ||αx|| = | α | ||x|| for all α ∈   and x ∈  . 

(c) ||x + y|| ≤ ||x|| + ||y|| for all x, y ∈   (triangle inequality). 

 

2. A linear space with a norm on it is called a normed linear space 

(NLS). 

Theorem 9.5.2. Let   be a normed linear space and x, y ∈   Then,   

 

    ||x|| − ||y||≤ ||x –y|| 

Proof.  

As ||x|| = ||x − y + y|| ≤ ||x – y|| + ||y|| one has ||x|| − ||y|| ≤ ||x – y||.  

 

Similarly, one obtains 

 

 ||y|| − ||x|| ≤ ||y – x|| = ||x – y||  

 

Combining the two, the required result follows. 

 

Example:  Let   be an IPS. Is it true that f(x) = √〈   〉 is a norm? 

 

Solution: Yes. The readers should verify the first two conditions. For the 

third condition, recalling the Cauchy-Schwartz inequality, we get 

 

Thus, ||x|| = √〈   〉 is a norm, called the norm induced by the inner 

product h·, ·i. 

 

Theorem 9.5.3 . Let ||· || be a norm on a NLS  . Then, k · k is induced 

by some inner product if and only if k · k satisfies the parallelogram law: 

||x + y||
2
 + ||x – y||

2
 = 2||x||

2 
+ 2||y||

2
. 

Example 
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1. For x = (x1, x2)
T
 ∈ ℝ2

, we define kxk1 = |x1| + |x2|. Verify that ||x||1 

is indeed a norm. But, for x = e1 and y = e2, 2(||x||
2
 + ||y||

2
) = 4 whereas  

 

 ||x + y||
2
 + ||x – y||

2
 = ||(1, 1)||

2
 + ||(1, −1)||

2
 = (|1| + |1|)

2
 + (|1| + | − 

1|)
2
 = 8. 

So, the parallelogram law fails. Thus, ||x||1  is not induced by any inner 

product in ℝ2
. 

 

9.6 GRAM-SCHMIDT 

ORTHONORMALIZATION PROCESS 
 

Definition 9..61. Let   be an IPS. Then, a non-empty set S = {v1, . . . , 

vn} ⊆    is called an orthogonal set if vi and vj are mutually 

orthogonal, for 1 ≤ i ≠ j ≤ n, i.e.,  

 

   〈     〉    , for 1 ≤ i < j ≤ n. 

Further, if ||vi|| = 1, for 1 ≤ i ≤ n, Then S is called an orthonormal set. If 

S is also a basis of V then S is called an orthonormal basis of V. 

 

Example. Which point on the plane P is closest to the point, say Q? 

 

 

 

 

 

 

Solution: Let y be the foot of the perpendicular from Q on P . Thus, by 

Pythagoras Theorem, this point is unique. So, the question arises: how do 

we find y? 

Note that    ⃗⃗⃗⃗  ⃗ gives a normal vector of the plane P . Hence,  ⃗  = y +    ⃗⃗⃗⃗  ⃗. 

So, need to decompose ,  ⃗   into two vectors such that one of them lies on 

the plane P and the other is orthogonal to the plane. 

 

 



Notes 

30 

 

 

 

 

     Figure B: Decomposition of vector v 

 

Thus, we see that given u, v ∈ V \ {0}, we need to find two vectors, say y 

and z, such that y is parallel to u and z is perpendicular to u. Thus, y = u 

cos(θ) and z = u sin(θ), where θ is the angle between u and v. 

 

We do this as follows (see Figure B). Let  ̂  
 

     
  be the unit vector in 

the direction of u. Then, using trigonometry,        
    ⃗⃗⃗⃗⃗⃗   

    ⃗⃗ ⃗⃗  ⃗  
 . Hence|| 

  ⃗⃗⃗⃗⃗⃗ || = ||   ⃗⃗⃗⃗⃗⃗ || cos(θ). Now using Definition of angle between vectors  

 

 

 

where the absolute value is taken as the length/norm is a positive 

quantity. Thus, 

 

 

 

Hence 

 

 

In literature, the vector y =   ⃗⃗⃗⃗⃗⃗  is called the orthogonal projection of v 

on u, denoted Proju(v). Thus 

 

 

(C) 

 

 Moreover, the distance of u from the point P equals 
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Example: Determine the projection of v = (1, 1, 1, 1)
T
 on u = (1, 1, −1, 

0)
T 

. 

Solution: By Equation (C), we have 

 

 

 

And w = (1, 1, 1, 1)T − Projv(u) = 1 3(2, 2, 4, 3)T is orthogonal to u. 

 

Example: Let u = (1, 1, 1, 1)T , v = (1, 1, −1, 0)T , w = (1, 1, 0, −1)T ∈ 

ℝ4
. Write v = v1 + v2, where v1 is parallel to u and v2 is orthogonal to u. 

Also, write w = w1 + w2 + w3 such that 

w1 is parallel to u, w2 is parallel to v2 and w3 is orthogonal to both u 

and v2. 

 

Solution: Note that 

Theorem 9.6.2 Let S = {u1, . . . , un} be an orthonormal subset of an IPS 

     

1. Then, S is a linearly independent subset of   . 

2. Suppose v ∈ LS(S) with v = ∑      
 
    for some αi‘s in  . Then, 

 

 

 

 



Notes 

32 

 

3. Let z ∈   and w = ∑ 〈    〉   
 
   . Then, z = w + (z − w) with 〈  

   〉= 0, i.e., z − w ∈ LS(S)⊥. Further, ||z||
2
 = ||w||

2
 + ||z – w||

2
 ≥ ||w||

2
. 

 

4. Let dim( ) = n. Then, 〈    〉 = 0 for all i = 1, 2, . . . , n if and only if v 

= 0. 

 

Proof. Part 1: Consider the linear system c1u1 + · · · + cnun = 0 in the 

variables c1, . . . , cn. As 

〈   〉= 0 and 〈     〉 = 0, for all j ≠i, we have 

Hence, ci = 0, for 1 ≤ i ≤ n. Thus, the above linear system has only the 

trivial solution. So, 

the set S is linearly independent. 

 

Part 2: Note that 

 

This completes the first sub-part. For the second sub-part, we have 

 

Part 3: Note that for 1 ≤ i ≤ n, 
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So, z − w ∈ LS(S)⊥. Hence, 〈        〉     as w ∈ LS(S). Further, 

||z||
2 
= ||w + (z − w)||

2
 = ||w||

2
 + ||z – w||

2
 ≥ ||w||

2
. 

 

Part 4: Follows directly using Part 2b as {u1,..., un} is a basis of  . 

 

Theorem 9.6.3 . Let   be a finite dimensional ips with an orthonormal 

basis {v1, · · · , vn}. 

Then, for each x, y ∈  , 

 

 

 

 

 

Furthermore, if x = y then kxk2 = ∑   〈    〉 
  

    (generalizing the 

Pythagoras Theorem). 

As a corollary to Theorem 9.5.2, we have the following result.  

 

Theorem 9.5.4 (Bessel‘s Inequality). Let V be an ips with {v1, · · · , vn} 

as an orthogonal set. 

Then, 

      

for each z 

∈ V.  

 

 

Equality holds if and only if  

 

Proof. For 1 ≤ k ≤ n, define    
  

      
  and use Theorem 9.5.2.4 to get 

the required result. 

Check your proress 

3. Explain normed linear space. 
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4. Explain Orthonormal projection 

 

 

9.7 LET’S SUM UP 
 

In this chapter we got clarity about the inner product space, Cauchy-

Schwartz inequality, orthogonality, orthonormal basis  and orthogonal 

projection 

9.8 KEYWORDS 
 

1. Vertices - The common endpoint of two or more rays or line segments 

2. Coordinates - A set of values that show an exact position. On graphs 

it is usually a pair of numbers: the first number shows the distance along, 

and the second number shows the distance up or down 

3. Linearly Independent. A set of vectors is maximally linearly 

independent if including any other vector in the vector space would 

make it linearly dependent 

4. Parallel lines are two lines that are always the same distance apart and 

never touch. 

9.9 QUESTION FOR REVIEW 
 

1. Let u = (−1, 1, 2, 3, 7)
T
 ∈ ℂ5

. Find all α ∈ ℂ such that ||αu|| = 1. 

2. Consider ℝ3
 with the standard inner product. Find -- S⊥ for S = {(1, 1, 

1)
T
 , (0, 1, −1)

T
} and S = LS((1, 1, 1)

T
 , (0, 1, −1)

T
 ). 

3. Let A ∈ Mn(ℂ) satisfy ||Ax||≤ ||x|| for all x ∈ ℂn. Then, prove that if α 

∈ ℂ with | α | > 1 then A − αI is invertible. 

4. Prove Bessel’s Inequality 
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9.11 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. [Provide definition and example-- 9.1.1 & 9.1.3] 

2. Provide related definitions – 9.2.1  

3. Provide definition and explanation – 9.4.1 

4. Explain example of 9.5.1 
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UNIT 10:  QUADRATIC FORMS 
 

STRUCTURE 

10.0 Objective 

10.1 Introduction 

10.2 Quadratic Forms 

10.3 Reduction of Quadratic Forms 

10.4 Canonical Forms for Complex and Real Forms 

10.5 Sylvester‘s Law of Inertia 

10.6 Let‘s sum up  

10.7 Keywords 

10.8 Questions for review 

10.9 Suggested Readings 

10.10 Answers to Check Your Progress 

10.0 OBJECTIVE 
 

Understand the concept of Quadratic forms & reduction of Quadratic 

forms, Understand the canonical forms , Understand the Sylvester law of 

inertia. 

10.1 INTRODUCTION  
 

A lot of applications of mathematics involve dealing with quadratic 

forms: you meet them in statistics (analysis of variance) and mechanics 

(energy of rotating bodies), among other places. In this section we begin 

the study of quadratic forms. 
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10.2 QUADRATIC FORMS 
 

For almost everything in the remainder of this chapter, we assume that 

the characteristic of the field   is not equal to 2. 

This means that 2 ≠ 0 in  , so that the element 1/2 exists in  . Of our list 

of ―standard‖ fields, this only excludes  2, the integers mod 2. (For 

example, in  5, we have 1/2 = 3.) 

A quadratic form as a function which, when written out in coordinates, is 

a polynomial in which every term has total degree 2 in the variables. For 

example, is a quadratic form in three variables. 

 

  q(x,y,z) = x
2
 + 4xy+ 2xz − 3y

2
 − 2yz − z

2
 

 

Definition 10.2.1 A quadratic form in n variables x1,...,xn over a field   

is a polynomial 

 

 

 

in the variables in which every term has degree two (that is, is a multiple 

of xix j for some i, j). 

In the above representation of a quadratic form, we see that if i ≠ j, then 

the term in xix j comes twice, so that the coefficient of xix j is aij + aji. We 

are free to choose any two values for a ij and a ji as long as they have the 

right sum; but we will always make the choice so that the two values are 

equal. That is, to obtain a term c xix j , we take aij = aji = c/2. (This is why 

we require that the characteristic of the field is not 2.) 

Any quadratic form is thus represented by a symmetric matrix A with (i, 

j) entry aij (that is, a matrix satisfying A = A>). This is the third job of 

matrices in linear algebra: Symmetric matrices represent quadratic 

forms. 

We think of a quadratic form as defined above as being a function from 

the vector space   n
 to the field  . It is clear from the definition that 
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Now if we change the basis for V , we obtain a different representation 

for the same function q. The effect of a change of basis is a linear 

substitution v = Pv' on the variables, where P is the transition matrix 

between the bases. Thus we have so we have the following: 

 

 v⊤Av = (Pv')⊤(P v') = (v')⊤ (P⊤AP) v', 

Proposition 10.2.2 A basis change with transition matrix P replaces the 

symmetric matrix A representing a quadratic form by the matrix P⊤AP. 

Definition 10.2.3 Two symmetric matrices A,A' over a field   are 

congruent if A' = P⊤AP for some invertible matrix P. 

Proposition 10.2.4 Two symmetric matrices are congruent if and only if 

they represent the same quadratic form with respect to different bases. 

10.3 REDUCTION OF QUADRATIC 

FORMS 
 

Even if we cannot find a canonical form for quadratic forms, we can 

simplify them very greatly. 

Theorem 10.3.1 Let q be a quadratic form in n variables x1,...,xn, over a 

field   whose characteristic is not 2. Then by a suitable linear 

substitution to new variables y1,...,yn, we can obtain for some c1,...,cn ∈ 

 . 

 

 

 

Proof : Our proof is by induction on n. We call a quadratic form which is 

written as in the conclusion of the theorem diagonal. A form in one 

variable is certainly diagonal, so the induction starts. Now assume that 

the theorem is true for forms in n− 1 variables. Take 

 

 

 

where aij = aji for i ≠ j. 

Case 1: Assume that aii ≠ 0 for some i. By a permutation of the variables 

(which is certainly a linear substitution), we can assume that a11 ≠ 0. Let 
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Then we have 

 

 

where q' is a quadratic form in x2,...,xn. That is, all the terms involving x1 

in q have been incorporated into      
 . So we have 

 

 

 

where q" is the part of q not containing x1 minus q'. By induction, 

there is a change of variable so that and so we are done (taking c1 = a11). 

  

 

 

Case 2: All aii are zero, but aij ≠ 0 for some i ≠ j. Now 

 

 

 

Case 3: All aij are zero. Now q is the zero form, and there is nothing to 

prove: take c1 = ··· = cn = 0. 

Example : Consider the quadratic form q(x,y,z) = x
2
 + 2xy+ 4xz+ y

2
 + 

4z
2
. We have 

 

 

 

 

 

 

 

where u = x + y + 2z, v = y − z, w = y + z. Otherwise said, the matrix 

representing the quadratic form, namely is congruent to the matrix 

 

 



Notes 

40 

 

 

 

 

Can you find an invertible matrix P such that 

P>AP = A'? 

Thus any quadratic form can be reduced to the diagonal shape 

α1  
  +···+αn  

  by a linear substitution. But this is still not a ―canonical 

form for congruence‖. 

For example, if y1 = x1/c, then α1  
  = (α1c2)   

 . In other words, we can 

multiply any αi by any factor which is a perfect square in  . Over the 

complex numbers C, every element has a square root. Suppose that 

α1,...,αr ≠ 0, and αr+1 = ··· = αn = 0. Putting 

 

we have q =   
 . +···+   

 .. 

We will see later that r is an ―invariant‖ of q: however we do the 

reduction, we arrive at the same value of r. Over the real numbers R, 

things are not much worse. Since any positive real number has a square 

root, we may suppose that α1,...,αs > 0, αs+1,...,αs+t < 0, 

and α s+t+1,...,αn = 0. Now putting 

 

 

 

 

 

We get q =   
  +···+ x+ s2 − xs 2+1 −···− xs 2+t. 

Again, we will see later that s and t don‘t depend on how we do the 

reduction. 

[This is the theorem known as Sylvester’s Law of Inertia.] 

10.3.2 Quadratic and bilinear forms 

The formal definition of a quadratic form looks a bit different from the 
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version we gave earlier, though it amounts to the same thing. First we 

define a bilinear form. 

Definition 10.3.3 (a) Let b : V ×V → K be a function of two variables 

from V with values in K. We say that b is a bilinear form if it is a linear 

function of each variable when the other is kept constant: that is, 

 b(v,w1 + w2) = b(v,w1)+ b(v,w2), b(v,cw) = cb(v,w), 

With two similar equations involving the first variable. A bilinear form b 

is symmetric if b(v,w) = b(w,v) for all v,w ∈ V . 

 

(b) Let q : V → K be a function. We say that q is a quadratic form if 

– q(cv) = c
2
q(v) for all c ∈ K, v ∈ V ; 

– the function b defined by 

b(v,w) = 
 

 
(q(v+ w)− q(v)− q(w)) 

is a bilinear form on V . 

 

Remarks The bilinear form in the second part is symmetric; and the 

division by 2 in the definition is permissible because of our assumption 

that the characteristic of K is not 2. 

If we think of the prototype of a quadratic form as being the function x
2
, 

then the first equation says (cx)
2
 = c

2
x

2
, while the second has the form  

 

 
 ((x+ y)

2
 − x

2
 − y

2
) = xy, 

and xy is the prototype of a bilinear form: it is a linear function of x when 

y is constant, and vice versa. 

Note that the formula b(x,y) = 
 

 
 (q(x+ y)− q(x)− q(y)) (which is known 

as the polarization formula) says that the bilinear form is determined by 

the quadratic term.  

Conversely, if we know the symmetric bilinear form b, then we have  

 2q(v) = 4q(v)− 2q(v) = q(v+ v)− q(v)− q(v) = 2b(v,v), 

so that q(v) = b(v,v), and we see that the quadratic form is determined by 

the symmetric bilinear form. So these are equivalent objects. 

If b is a symmetric bilinear form on V and B = (v1,...,vn) is a basis for V , 

then we can represent b by the n× n matrix A whose (i, j) entry is aij = 

b(vi,v j). 



Notes 

42 

Note that A is a symmetric matrix. It is easy to see that this is the same as 

the matrix representing the quadratic form. 

Here is a third way of thinking about a quadratic form. Let V  
be the dual 

space of V, and let α :V →V   be a linear map. Then for v ∈ V, we have 

α(v) ∈ V , and so α(v)(w) is an element of K. The function 

      

    b(v,w) = α(v)(w) 

is a bilinear form on V . If α(v)(w) = α(w)(v) for all v,w ∈ V , then this 

bilinear form is symmetric. Conversely, a symmetric bilinear form b 

gives rise to a linearbmap α : V → V  
 satisfying α(v)(w) = α(w)(v), by the 

rule that α(v) is the linear map w → b(v,w). 

Now given α : V → V  , choose a basis B for V , and let B  be the dual 

basis for V  Then α is represented by a matrix A relative to the bases B 

and B  

Proposition 10.3.4  The following objects are equivalent on a vector 

space over a field whose characteristic is not 2: 

(a) a quadratic form on V ; 

(b) a symmetric bilinear form on V ; 

(c) a linear map α : V → V  satisfying α(v)(w) = α(w)(v) for all v,w ∈ V 

.Moreover, if corresponding objects of these three types are represented 

by matrices as described above, then we get the same matrix A in each 

case. Also, a change of basis in V with transition matrix P replaces A by 

P⊤ 
AP. 

Proof : Only the last part needs proof. We have seen it for a quadratic 

form, and the argument for a bilinear form is the same. So suppose that α 

: V → V  , and we change from B to B' in V with transition matrix P. We 

saw that the transition matrix between the dual bases in V  is (P⊤ 
)
−1

.  

Now go back to the discussion 

of linear maps between different vector spaces in Chapter 4. If α : V → 

W and 

we change bases in V and W with transition matrices P and Q, then the 

matrix A representing α is changed to Q
−1

 AP. Apply this with Q = 

P⊤)−1, so that Q
−1

 = P⊤ 
,and we see that the new matrix is P⊤ 

AP, as 

required. 

Check your progress 
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1.  Explain Quadartic form  

 

2. What do you understand by bilinear form, enumerate it. 

 

10.4 CANONICAL FORMS FOR 

COMPLEX AND REAL FORMS 
 

Finally, in this section, we return to quadratic forms (or symmetric 

matrices) over the real and complex numbers, and find canonical forms 

under congruence. Recall that two symmetric matrices A and A' are 

congruent if A' = P⊤AP for some invertible matrix P; as we have seen, 

this is the same as saying that the represent the same quadratic form 

relative to different bases. 

Theorem 10.4.1  Any n× n complex symmetric matrix A is congruent to 

a matrix of the form 

 

 

 

for some r. Moreover, r = rank(A), and so A is congruent to two matrices 

of this form then they both have the same value of r. 

Proof We already saw that A is congruent to a matrix of this form. 

Moreover, if P is invertible, then so is P⊤, and so as claimed 

  r = rank(P⊤AP) = rank(A) 

The next result is Sylvester‘s Law of Inertia. 

Theorem 10.4.2  Any n× n real symmetric matrix A is congruent to a 

matrix of the form 

 

 

 

for some s,t. Moreover, if A is congruent to two matrices of this form, 

then they have the same values of s and of t. 

Proof Again we have seen that A is congruent to a matrix of this form. 

Arguing as in the complex case, we see that s + t = rank(A), and so any 
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two matrices of this form congruent to A have the same values of s+t. 

Suppose that two different reductions give the values s,t and s',t' 

respectively, with s+t = s' +t' = n. Suppose for a contradiction that s < s’. 

Now let q be the quadratic form represented by A. Then we are told that 

there are linear functions y1,...,yn and z1,...,zn of the original variables 

x1,...,xn of q such that 

Now consider the equations 

  y1 = 0,...,  ys = 0,   zs'+1 = 0,...   zn = 0 

regarded as linear equations in the original variables x1,...,xn. The 

number of equations is s+(n− s') = n−(s' − s) < n. According to a lemma 

from much earlier in the course (we used it in the proof of the Exchange 

Lemma!), the equations have a non-zero solution. That is, there are 

values of x1,...,xn, not all zero, such that the variables y1,...,ys and 

zs'+1,...,zn are all zero. 

Since y1 = ··· = ys = 0, we have for these values 

 

 

 

But since z 

s'+1 = ··· = zn = 0, we also have 

 

 

But this is a contradiction. So we cannot have s < s'. Similarly we cannot 

have s0 < s either. So we must have s = s', as required to be proved. 

 

We saw that s+t is the rank of A. The number s−t is known as the 

signature of A. Of course, both the rank and the signature are 

independent of how we reduce the matrix (or quadratic form); and if we 

know the rank and signature, we can easily recover s and t. 

Let q be a quadratic form in n variables represented by the real 

symmetric matrix A. Let q (or A) have rank s+ t and signature s− t, that 

is, have s positive and t negative terms in its diagonal form. We say that 

q (or A) is 
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• positive definite if s = n (and t = 0), that is, if q(v) ≥ 0 for all v, with 

equality only if v = 0; 

• positive semidefinite if t = 0, that is, if q(v) ≥ 0 for all v; 

• negative definite if t = n (and s = 0), that is, if q(v) ≤ 0 for all v, with 

equality only if v = 0; 

• negative semi-definite if s = 0, that is, if q(v) ≤ 0 for all v; 

• indefinite if s > 0 and t > 0, that is, if q(v) takes both positive and 

negative values. 

Lemma 10.4.3. Let A ∈  n (ℂ). Then A is Hermitian if and only if at 

least one of the following 

statements hold: 

1. S AS is Hermitian for all S ∈  n. 

2. A is normal and has real eigenvalues. 

3. x Ax ∈ ℝ for all x ∈ ℂ n. 

Proof. Let S ∈  n, (S
*
AS)

*
 = S

*
A

* 
S = S

*
AS. Thus S

*
AS is Hermitian. 

Suppose A = A
*.
 Then, A is clearly normal as AA* = A

2
 = *A. Further, if 

(λ, x) is an 

eigenpair then λx x = x Ax ∈ R implies λ ∈ R. 

For the last part, note that x Ax ∈ C. Thus     ̅̅ ̅̅ ̅̅ ̅ = (x*Ax)* = x*A*x = 

x*Ax, we get Im(x*Ax) = 0. Thus, x*Ax ∈ ℝ. 

 

If S*AS is Hermitian for all S ∈  n. then taking S = In gives A is 

Hermitian. 

If A is normal then A = U * diag(λ1, . . . , λn)U for some unitary matrix 

U. Since λi ∈ R,  

A* = (U   diag(λ1, . . . , λn)U)*= U*diag(λ1, . . . , λn)U = U* diag(λ1, . . . 

, λn)U = A.  

So, A is Hermitian. 

If x*Ax ∈ R for all x ∈ ℂ n. then aii = e  i Aei ∈ R. Also,  

aii +a
jj 

+aij +aji = (ei +ej) A(ei + ej) ∈ R.  

So, 

Im(aij) = −Im(aji). Similarly, aii + ajj + iaij − iaji = (ei + iej) A(ei + iej) ∈ 

Rimplies that Re(aij) = Re(aji). Thus, A = A*. 

Remark 10.3.4 Let A ∈  n. (ℝ). Then the condition x Ax ∈ ℝ in 

Definition 6.3.9 is always 
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true and hence doesn‘t put any restriction on the matrix A. So, in 

Definition 6.3.9, we assume 

that A
T
 = A, i.e., A is a symmetric matrix. 

Example: 

Theorem 10.4.5 Let A ∈  n (ℂ). Then, the following statements are 

equivalent. 

 

1. A is positive semi-definite. 

2. A  = A and each eigenvalue of A is non-negative. 

3. A = B* B for some B ∈  n (ℂ). 

 

Proof. 1 ⇒ 2: Let A be positive semi-definite. Then, by Lemma 10.3.3 A 

is Hermitian. If 

(α, v) is an eigen-pair of A then α||v||
2
 = v Av ≥ 0. So, α ≥ 0. 

2 ⇒ 3: Let σ(A) = {α1, . . . , αn}. Then, by spectral theorem, there exists a 

unitary matrix U such that U  AU = D with D = diag(α1, . . . , αn). As αi 

≥ 0, for 1 ≤ i ≤ n define 

D
1/2 

= diag(√  , . . . , √  ,). Then, A = U D
1/2 

 [D
1/2 

U*] = B* B. 

3 ⇒ 1: Let A = B* B. Then, for x ∈ ℂn, x Ax = x B Bx = ||Bx||
2
 ≥ 0. Thus, 

the required result follows. 

A similar argument gives the next result and hence the proof is omitted. 

Theorem 10. 4.6. Let A ∈  n (ℂ).Then, the following statements are 

equivalent. 

1. A is positive definite. 

2. A* = A and each eigenvalue of A is positive. 

3. A = B B for a non-singular matrix B ∈  n(ℂ). 

Remark 10.4.7. Let A ∈  n (ℂ).be a Hermitian matrix with eigenvalues 

λ1 ≥ λ2 ≥ · ·· ≥ λn. Then, there exists a unitary matrix U = [u1, u2, . . . , 

un] and a diagonal matrix D = diag(λ1, λ2, . . . , λn) such that A = 

UDU*.  Now, for 1 ≤ i ≤ n, define αi = max{λi, 0} and βi = min{λi, 0}.  
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Then 

1. for D1 = diag(α1, α2, . . . , αn), the matrix A1 = UD1U* is positive 

semi-definite. 

2. for D2 = diag(β1, β2, . . . , βn), the matrix A2 = UD2U* is positive 

semi-definite. 

3. A = A1 − A2. The matrix A1 is generally called the positive semi-

definite part of A. 

Definition 10.4.8. [Multilinear Function] Let   be a vector space over 

 . Then,  

 

1. for a fixed m ∈ N, a function f :   m
 →   is called an m-multilinear 

function if f is linear in each component. That is, 

f (v1, . . . , vi−1, (vi + αu), vi+1 . . . , vm) = f(v1, . . . , vi−1, vi, vi+1 . . . , 

vm) +αf(v1, . . . , vi−1, u, vi+1 . . . , vm) 

for α ∈  , u ∈   and vi ∈  , for 1 ≤ i ≤ m. 

2. An m-multilinear form is also called an m-form. 

3. A 2-form is called a bilinear form. 

Definition 10.4.9. [Sesquilinear, Hermitian and Quadratic Forms] 

Let A = [aij] ∈   n(ℂ). 

be a Hermitian matrix and let x, y ∈ ℂn. Then, a sesquilinear form in x, 

y ∈ ℂn is defined as H(x, y) = y Ax. In particular, H(x, x), denoted H(x), 

is called a Hermitian form. In case A ∈ Mn(R), H(x) is called a 

quadratic form. 

Remark 10.4.10. Observe that 

1. if A = In then the bilinear/sesquilinear form reduces to the standard 

inner product. 

2. H(x, y) is ‗linear‘ in the first component and ‗conjugate linear‘ in the 

second component. 

3. The quadratic form H(x) is a real number. Hence, for α ∈ R, the 

equation H(x) = α, represents a conic in ℝn
. 

 

10.5 SYLVESTER’S LAW OF INERTIA 
 

The main idea of this section is to express H(x) as sum or difference of 

squares. Since H(x) is 
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a quadratic in x, replacing x by cx, for c ∈ ℂ, just gives a multiplication 

factor by |c|
2
. Hence, 

one needs to study only the normalized vectors. Let us consider Example 

6.1.1 again. There we see that 

 

 

 

Note that both the expressions in Equation (1) is the difference of two 

non-negative terms. 

Whereas, both the expressions in Equation (2) consists of sum of two 

non-negative terms. Is this just a coincidence? 

In general, let A ∈  n(ℂ) be a Hermitian matrix. Then, σ(A) = {α1, . . . , 

αn} ⊆ ℝ and there exists a unitary matrix U such that U*AU = D = 

diag(α1, . . . , αn). 

Let x = Uz. Then, kxk = 1 and U is unitary implies that ||z|| = 1. If z = 

(z1, . . . , zn)* then 

 

where α1, . . . , αp > 0, αp+1, . . . , αr < 0 and αr+1, . . . , αn = 0. Thus, 

we see that the possible values of H(x) seem to depend only on the 

eigenvalues of A. Since U is an invertible matrix, the components zi‘s of 

z = U 
−1

 x = U *x are commonly known as the linearly independent 

linear forms. Note that each zi is a linear expression in the components 

of x. Also, note that in Equation (6.3.3), p corresponds to the number of 

positive eigenvalues and r − p to the number of negative eigenvalues. 

For a better understanding, we define the following numbers. 

Definition 10.5.1. [Inertia and Signature of a Matrix] Let A ∈  n(ℂ) 

be a Hermitian matrix. The inertia of A, denoted i (A), is the triplet 

(i+(A), i−(A), i'(A)), where i+(A) is the number of positive eigenvalues of 
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A, i−(A) is the number of negative eigenvalues of A and i'(A) is the 

nullity of A. The difference i+(A) − i−(A) is called the signature of A. 

Lemma 10.5.2 . [Sylvester’s Law of Inertia] Let A ∈  n(ℂ) be a 

Hermitian matrix and let 

x ∈ ℂn. Then, every Hermitian form H(x) = x Ax, in n variables can be 

written as 

 

whe

re 

y1, . . . , yr are linearly independent linear forms in the components of x 

and the integers p and r satisfying 0 ≤ p ≤ r ≤ n, depend only on A. 

Proof. Equation (3) implies that H(x) has the required form. We only 

need to show that p and r are uniquely determined by A. Hence, let us 

assume on the contrary that there exist p, q, r, s ∈ N with p > q such that 

 

where y = [
  

  
] = Mx, z = [

  

  
] = Nx with      [

  

 
  

] and Z1 = [

  

 
  

] for 

some  invertible matrices M and N. Now the invertibility of M and N 

implies z = By, for some invertible matrix B. 

 Decompose  

 

 

 

 

where B1 is a q × p matrix. Then    

 

 

 

 

As p > q, the homogeneous linear system B1Y1 = 0 has a nontrivial 

solution, say    ̃    [

 ̃ 

 
 ̃ 

] and 
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consider  ̃   [
  

 
] .Then for this choice of y e, Z1 = 0 and thus, using 

Equations (4) and (5), we have 

 

Now, this can hold only if   ̃= 0, a contradiction to Y f 1 being a non-

trivial solution. Hence 

p = q. Similarly, the case r > s can be resolved. This completes the proof 

of the lemma. 

Remark 10.5.3. Since A is Hermitian, Rank(A) equals the number of 

nonzero eigenvalues. Hence, Rank(A) = r. The number r is called the 

rank and the number r − 2p is called the inertial degree of the 

Hermitian form H(x). 

Check your progress 

3. What is Hermitian and state its necessary condition? 

 

4. Define Signature and inertia of the matrix 

 

10.6 LET’S SUM UP 
 

We understand the quadratic forms, its representation and its reduction. 

We have understood the relation between quadratic form and bilinear 

form. Comprehended the Slyvester law of Inertia 

10.7 KEYWORDS 
 

1. Symmetric matrices – a symmetric matrix is a square matrix that is 

equal to its transpose. 

2. Unitary matrix – a matrix that has an inverse and a transpose whose 

corresponding elements are pairs of conjugate complex numbers. 

3. Restriction – the restriction of a function is a new function, denoted 

or , obtained by choosing a smaller domain A for the original 

function 
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4.  Permissible –  that may be permitted : allowable 

10.8 QUESTION FOR REVIEW 
 

1. Let A ∈  n(ℂ) be a Hermitian matrix. If the signature and the rank of 

A is known then prove that one can find out the inertia of A. 

2. Explain reduction of Quadratic forms 

3. Explain Slyvester law of Inertia 
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10.10 ANSWER TO CHECK YOUR 

PROGRESS 
1. Provide definition and example—10.1.1 

2. Provide explanation and definition – 10.2.3 

3. Provide definition and explanation – 10.3.3 

4. Provide definition – 10.4.1 
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UNIT 11: JORDAN CANONICAL 

FORM 
 

STRUCTURE 

11.0 Objective 

11.1 Introduction 

11.2 Generalized Schur‘s Theorem 

11.3 Jordan Canonical Form Theorem 

11.4 Minimal Polynomial 

11.5 Let‘s sum up  

11.6 Keywords 

11.7 Questions for review 

11.8 Suggested Readings 

11.9 Answers to Check Your Progress 

11.0 OBJECTIVE 
 

Understand the generalized Schur‘s theorem and its application 

Comprehend the JORDAN CANONICAL FORM THEOREM 

ENUMERATE TE CONCEPT OF minimal polynomial 

11.1 INTRODUCTION 
 

 

Jordan canonical form is a representation of a linear 

transformation over a finite-dimensional complex vector space by a 

particular kind of upper triangular matrix. Every such linear 
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transformation has a unique Jordan canonical form, which has useful 

properties: it is easy to describe and well-suited for computations. 

Less abstractly, one can speak of the Jordan canonical form of a square 

matrix; every square matrix is similar to a unique matrix in Jordan 

canonical form, since similar matrices correspond to representations of 

the same linear transformation with respect to different bases, by 

the change of basis theorem. 

Jordan canonical form can be thought of as a generalization 

of diagonalizability to arbitrary linear transformations (or matrices); 

indeed, the Jordan canonical form of a diagonalizable linear 

transformation (or a diagonalizable matrix) is a diagonal matrix. 

11.2 GENERALIZED SCHUR’S THEOREM 
 

We start this chapter with the following theorem which generalizes the 

Schur Upper triangularization theorem. 

Theorem 11.2.1. [Generalized Schur’s Theorem] Let A ∈ Mn(C). 

Suppose λ1, . . . , λk are the distinct eigenvalues of A with multiplicities 

m1, . . . , mk, respectively. Then, there exists a non-singular matrix W 

such that 

 

and Ti‘s are upper triangular matrices with constant diagonal λi. If A has 

real entries with real eigenvalues then W can be chosen to have real 

entries. 

Proof. By Schur Upper Triangularization, there exists a unitary matrix U 

such that U*AU = T, an upper triangular matrix with diag(T) = (λ1, . . . , 

λ1, . . . , λk, . . . , λk). Now, for any upper triangular matrix B, a real 

number α and i < j, consider the matrix F(B, i, j, α) = Eij(−α)BEij(α). 

Then, for 1 ≤ k, l ≤ n, 
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Now, using Equation (1), the diagonal entries of F(T, i, j, α) and T are 

equal and  

 

Thus, if we denote the matrix F(T, i, j, α) by T1 then (F(T1, i − 1, j, 

α))i−1,j = 0, for some choice of α, whenever (T1)i−1,i−1 ≠ Tjj. Moreover, 

this operation also preserves the 0 created by F(T, i, j, α) at (i, j)-th place. 

Similarly, F(T1, i, j + 1, α) preserves the 0 created by F(T, i, j, α) at (i, j)-

th place. So, we can successively apply the following sequence of 

operations to get T → F(T, m1, m1+1, α) = T1 → F(T1, m1−1, m1+1, β) 

→ · · · → F(     , 1, m1+1, γ) = Tm1 where α, β, . . . , γ are 

appropriately chosen and Tm1[:, m1 + 1] = λ2   
+1. Thus, observe that 

the above operation can be applied for different choices of i and j with i 

< j to get the required result. 

Definition 11.2.2. [Jordan Block and Jordan Matrix] 

1. Let λ ∈ ℂ  and k be a positive integer. Then, by the Jordan block Jk(λ) 

∈  k(ℂ), we 

understand the matrix 

 

 

 

 

 

 

2. A Jordan matrix is a direct sum of Jordan blocks. That is, if A is a 

Jordan matrix 

having r blocks then there exist positive integers ki‘s and complex 

numbers λi‘s (not 

necessarily distinct), for 1 ≤ i ≤ r such that 

       
                  

      

1. J1(0) = [0] is the only Jordan matrix of size 1. 

2. J1(0)   J1(0) = [
  
  

] and J2(0) = [
  
  

] are Jordan matrices of size 

2. 
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3. Even though , J1(0)   J2(0) and J2(0)   J1(0) are two Jordan matrices 

of size 3, we do 

not differentiate between them as they are similar 

4. J1(0)   J1(0)   J1(0) = [
   
   
   

] J2(0)   J1(0) = [
   
   
   

] and 

J3(0) = [
   
   
   

] 

Remark 11.2.3. [Jordan blocks] Fix a positive integer k. Then, 

1. Jk(λ) is an upper triangular matrix with λ as an eigenvalue. 

2. Jk(λ) = λIk + Jk(0). 

3. Alg.Mul λ(Jk(λ) )= k. 

4. The matrix Jk(0) satisfies the following properties. 

5. Thus, using Remark 11.1.3.4d Geo.Mul λ(Jk(λ)) = 1 

 

 

 

 

 

 

 

 

Definition 11.2.4. [Index of an Eigenvalue] Let J be a Jordan matrix 

containing Jt(λ), for some positive integer t and some complex number λ. 

Then, the smallest value of k for which Rank((J − λI)
k
) stops decreasing 

is the order of the largest Jordan block Jk(λ) in J. This number k is called 

the index of the eigenvalue λ. 

Lemma 11.2.5. Let A ∈  n(ℂ) be strictly upper triangular. Then, A is 

similar to a direct sum of Jordan blocks. That is, there exists a non-

singular matrix S and integers n1 ≥ . . . ≥ nm ≥ 1 

such that 

               
                

       

 

If A ∈  n(ℝ) then S can be chosen to have real entries. 

Proof. We will prove the result by induction on n. For n = 1, the 

statement is trivial. So, let 
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the result be true for matrices of size ≤ n − 1 and let A ∈  n(ℂ) be 

strictly upper triangular. 

Then, A =  [
   

   
] . By induction hypothesis there exists an invertible 

matrix S1 such that 

Thus, 

 

where   
       

                 
      S1 =    

 (0)   J and a
T
 S1 = 

[  
   

 ]. Now, writing    
 to 

mean    
 (0) and using Remark 11.1.3.4e, we have 

 

So, we now need to consider two cases depending on whether [a1, e1] = 

0 or [a1, e1] ≠ 0. In the 

first case, A is similar to [
    

 

    
 

   

].  This in turn is similar 

to[

   
  

    
 

   

] by permuting the first row and column. At this stage, 

one can apply induction and if necessary do a block 

permutation, in order to keep the block sizes in decreasing order. 

So, let us now assume that [a1, e1] ≠ 0. Then, writing α = [a1, e1], we 

have 
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Now, using Remark 11.1.3.4c, verify that 

 

Hence, for p = n − n1 − 1, we have 

 

If necessary, we need to do a block permutation, in order to keep the 

block sizes in decreasing order. Hence, the required result follows 

Corollary 11.2.6. A ∈ Mn(C). Then, A is similar to J, a Jordan matrix. 

Proof. Let λ1, . . . , λk be the distinct eigenvalues of A with algebraic 

multiplicities m1, . . . , mk. 

By Theorem 11.1.1, there exists a non-singular matrix S such that S
−1

 AS 

=      
 Ti, where Ti is an upper triangular with diagonal (λi, . . . , λi). 

Thus Ti − λi   
is a strictly upper triangular matrix. Thus, by Theorem 

11.1.5, there exist a non-singular matrix Si such that 

 

  
            

           

 

a Jordan matrix with 0 on the diagonal and the size of the Jordan blocks 

decreases as we move down the diagonal. So,   
       = J(λi) is a Jordan 

matrix with λi on diagonal and the size of the Jordan blocks decreases as 

we move down the diagonal. 

Now, take W =     
 Si. Then, verify that W 

−1
 AW is a Jordan matrix. 

Let A ∈  n(ℂ). Suppose λ ∈ σ(A) and J is a Jordan matrix that is similar 

to A. Then, for each fixed i, 1 ≤ i ≤ n, by `i(λ), we denote the number of 

Jordan blocks Jk(λ) in J for which k ≥ i.  

Remark 11.2.7 . Let A ∈  n(ℂ). Suppose λ ∈ σ(A) and J is a Jordan 

matrix that is similar to A. Then, for l ≤ k ≤ n, 

   lk(λ) = Rank(A − λI)
k−1

 − Rank(A − λI)
k
. 



Notes 

58 

Proof. We need to consider only the Jordan blocks Jk(λ), for different 

values of k. Hence, without loss of generality, let us assume that J 

=    
  aiJi(λ), where ai‘s are non-negative integers and J contains 

exactly ai copies of the Jordan block Ji(λ), for 1 ≤ i ≤ n. 

We observe the following: 

 

 

Thus, writing li in place of li (λ),we get 

 

 

Now, the required result follows as rank is invariant under similarity 

operation and the matrices J and A are similar. 

Lemma 11.2.8. [Similar Jordan Matrices] Let J and J0 be two similar 

Jordan matrices of size n. Then, J is a block permutation of J0. 

Proof. For 1 ≤ i ≤ n, let `i and `0i be, respectively, the number of Jordan 

blocks of J and J0 of size at least i corresponding to λ. Since J and J0 are 

similar, the matrices (J − λI)i and (J0 − λI)i are similar for all i, 1 ≤ i ≤ n. 

Therefore, their ranks are equal for all i ≥ 1 and hence, `i = `0i for all i ≥ 

1. Thus the required result follows. 

Check your progress 

1. Define the following 
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a. Jordan Block  

b. Jordan Matrix 

 

2. What do you understand by Similar Jordan Matrices. 

 

 

11.3 JORDAN CANONICAL FORM 

THEOREM 
 

Theorem 11.3.1. [Jordan Canonical Form Theorem] Let A ∈  n(ℂ). 

Then, A is similar to a Jordan matrix J, which is unique up to 

permutation of Jordan blocks. If A ∈  n(ℝ) and has real eigenvalues 

then the similarity transformation matrix S may be chosen to have real 

entries. 

This matrix J is called the the Jordan canonical form of A, denoted 

Jordan CF(A) 

Example:  Let us use the idea from Lemma 11.1.7 to find the Jordan 

Canonical Form of the following matrices. 

 

 

 

 

 

Solution: Note that l1 = 4 − Rank(A − 0I) = 2. So, there are two Jordan 

blocks. Also, l2= Rank(A − 0I) − Rank((A − 0I)2) = 2. So, there are at 

least 2 Jordan blocks of size 2. As there are exactly two Jordan blocks, 

both the blocks must have size 2. Hence, Jordan CF(A) = J2(0)   J2(0) 

 

2. 
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Solution: Let B = A1 − I. Then, l1= 4 − Rank(B) = 1. So, B has exactly 

one Jordan block and hence A1 is similar to j4(1) 

3.  

 

 

 

 

Solution: Let C = A2 − I. Then, l1= 4 − Rank(C) = 2. So, C has exactly 

two Jordan blocks. Also, l2= Rank(C) −Rank(C2) = 1 and l3= Rank(C2) 

−Rank(C3) = 1. So, there is at least 1 Jordan blocks of size 3. 

Thus, we see that there are two Jordan blocks and one of them is of size 

3. Also, the size of the matrix is 4. Thus, A2 is similar to J3(1)   J1(1). 

4. Let A = J4(1)
2
   A1   A2, where A1 and A2 are given in the previous 

exercises. 

Solution: One can directly get the answer from the previous exercises as 

the matrix A is already in the block diagonal form. But, we compute it 

again for better understanding. 

Let B = A − I. Then, 

 l1= 16 − Rank(B) = 5,  

l2= Rank(B) − Rank(B2) = 11 − 7 = 4,  

l3= Rank(B2) − Rank(B3) = 7 − 3 = 4 and 

 l4= Rank(B3) − Rank(B4) = 3 − 0 = 3. 

Hence, J4(1) appears thrice (as l4= 3 and l5= 0), J3(1) also appears once 

(as l3− l4= 1), 

J2 (1) does not appear as (as l2− l3= 0) and J1(1) appears once (as l1− l2= 

1). Thus, the required result follows. 

Theorem 11.3.2. [A is similar to A
T
] Let A ∈  n(ℂ). Then, A is similar 

to A
T 

. 

Proof. Let   

 

 

 

 

Then, observe that K
−1

 = K and KJn(a)K = Jn(a)
T
 , as the (i, j)-th entry of 

A goes to (n − i + 1, n − j + 1)-th position in KAK. Hence 
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Thus, J is similar to J
T
 . But, A is similar to J and hence A

T 
is similar to J

T
 

and finally we get A is similar to A
T
 . Therefore, the required result 

follows. 

11.4 MINIMAL POLYNOMIAL 
 

We start this section with the following definition. Recall that a 

polynomial p(x) = a0 + a1x + 

· · · + anx
n
 with an = 1 is called a monic polynomial. 

Definition 11.4.1. [Companion Matrix] Let P (t) = t
n
 + an−1 t

n−1 
+ · · · + 

a0 be a monic 

polynomial in t of degree n. Then, the n × n matrix 

 

 

 

 

 

 

 

 

denoted A(n : a0, . . . , an−1) or Companion(P ), is called the companion 

matrix of P (t). 

Definition 11.4.2. [Annihilating Polynomial] Let A ∈  n(ℂ). Then, the 

polynomial P (t) is said to annihilate (destroy) A if P (A) = 0. 

Let P (x) be the characteristic polynomial of A. Then, by the Cayley-

Hamilton Theorem, P (A) = 0. So, if f(x) = P (x)g(x), for any multiple of 

g(x), then f(A) = P (A)g(A) = 0g(A) = 0. Thus, there are infinitely many 

polynomials which annihilate A. In this section, we will concentrate on a 

monic polynomial of least positive degree that annihilates A. 

Definition 11.4.3. [Minimal polynomial] Let A ∈   n(ℂ). Then, the 

minimal polynomial 

of A, denoted mA(x), is a monic polynomial of least positive degree 

satisfying mA(A) = 0. 
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Theorem 11.3.4. Let A be the companion matrix of the monic polynomial 

P (t) = t
n
+an−1 t

n−1
+ 

· · · + a0. Then, P (t) is both the characteristic and the minimal 

polynomial of A. 

Proof. Expanding det(tIn − Companion(P )) along the first row, we have 

 

 det(tIn − A(n : a0,...,an−1)) = t det(t In−1 − A(n − 1 : a1,...,an−1)) + (−1)
n+1

 

a0(−1)
n−1 

 

            = t
2
 det(tIn−2 − A(n − 2 : a2,...,an−1)) + a0 + a1t 

  

           = P (t). 

 

Thus, P (t) is the characteristic polynomial of A and hence P (A) = 0. 

We will now show that P (t) is the minimal polynomial of A. To do so, 

we first observe that 

Ae1 = e2,...,Aen−1 = en. That is, 

    A
k
e1 = ek+1,    for 1 ≤ k ≤ n − 1.  

  (1) 

 

Now, Suppose we have a monic polynomial Q(t) = t
m
 + bm−1 t

m−1 
+ · · · + 

b0, with m < n, such that Q(A) = 0. Then, using Equation (1), we get 

 

0 = Q(A)e1 = A
m
e1 + bm−1 A

m−1 
e1 + · · · + b0Ie1 = em+1 + bm−1 em + · · · + 

b0e1, a contradiction to the linear independence of {e1,..., em+1} ⊆ {e1,..., 

en}. 

The next result gives us the existence of such a polynomial for every 

matrix A. To do so, recall that the well-ordering principle implies that if 

S is a subset of natural numbers then it contains a least element. 

Lemma 11.4.5. [Existence of the Minimal Polynomial] Let A ∈ 

Mn(C). Then, there exists a unique monic polynomial m(x) of minimum 

(positive) degree such that m(A) = 0. Further, if f(x) is any polynomial 

with f(A) = 0 then m(x) divides f(x). 

Proof. Let P (x) be the characteristic polynomial of A. Then, deg(P (x)) 

= n and by the Cayley-Hamilton Theorem, P (A) = 0. So, consider the set 

   S = {deg(f(x)) : f(x) is a nonzero polynomial, f(A) = 0}. 
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Then, S is a non-empty subset of N as n ∈ S. Thus, by well-ordering 

principle there exists a smallest positive integer, say M, and a 

corresponding polynomial, say m(x), such that 

deg(m(x)) = M, m(A) = 0. 

Also, without loss of generality, we can assume that m(x) is monic and 

unique (nonuniqueness will lead to a polynomial of smaller degree in S). 

Now, suppose there is a polynomial f(x) such that f(A) = 0. Then, by 

division algorithm, there exist polynomials q(x) and r(x) such that f(x) = 

m(x)q(x) + r(x), where either r(x) is identically the zero polynomial of 

deg(r(x)) < M = deg(m(x)). As 

 

  0 = f(A) = m(A)q(A) + r(A) = 0q(A) + r(A) = r(A), 

we get r(A) = 0. But, m(x) was the least degree polynomial with m(A) = 0 

and hence r(x) is the zero polynomial. That is, m(x) divides f(x). 

As an immediate corollary, we have the following result. 

Corollary 11.4.6. [Minimal polynomial divides the Characteristic 

Polynomial] Let mA(x) and PA(x) be, respectively, the minimal and the 

characteristic polynomials of A ∈  n(ℂ). 

1. Then, mA(x) divides PA(x). 

2. Further, if λ is an eigenvalue of A then mA(λ) = 0. 

Proof. The first part following directly from Lemma 11.3.5. For the 

second part, let (λ, x) be an 

eigen-pair. Then, f(A)x = f(λ)x, for any polynomial of f, implies that 

    mA(λ)x = mA(A)x = 0x = 0. 

 

But, x ≠ 0 and hence mA(λ) = 0. Thus, the required result follows. We 

also have the following result. 

Lemma 11.4.7. Let A and B be two similar matrices. Then, they have the 

same minimal polynomial. 

Proof. Since A and B are similar, there exists an invertible matrix S such 

that A = S
−1

 BS. Hence, f(A) = F (S
−1

 BS) = S
−1

 f(B)S, for any 

polynomial f. Hence, mA(A) = 0 if and only if mA(B) = 0 and thus the 

required result follows. 

 



Notes 

64 

Theorem 11.3.8. Let A ∈  n(ℂ) and let λ1, . . . , λk be the distinct 

eigenvalues of A. If ni is the size of the largest Jordan block for λi in J = 

Jordan CFA then 

 

 

 

Proof. Using 11.3.6, we see that  

 

 

 

for some αi‘s with 1 ≤ αi ≤ Alg.MULλi(A). As mA(A) = 0, using Lemma 

11.3.7 we have   

 

 

But, observe that for the Jordan block    
(λi) , one has 

1. (   
(λi) − λiI)

αi
 = 0 if and only if 

αi
 ≥ ni, and 

2. (   
(λm) − λiI)

αi
 is invertible, for all m ≠ i. 

Thus 

 

is a monic polynomial, the result follows. As an immediate consequence, 

we also have the following result which corresponds to the converse of 

the above theorem. 

Theorem 11.4.9. Let A ∈  n(ℂ) and let λ1, . . . , λk be the distinct 

eigenvalues of A. If the minimal polynomial of A equals ∏   
   (x − λi)

ni
 

then ni is the size of the largest Jordan block for λi in J = Jordan CFA. 

Proof. It directly follows from Theorem 11.3.8. 

We now give equivalent conditions for a square matrix to be 

diagonalizable. 

Theorem 11.4.10. Let A ∈  n(ℂ) Then, the following statements are 

equivalent. 

1. A is diagonalizable. 

2. Every zero of mA(x) has multiplicity 1. 

3. Whenever mA(α) = 0, for some α, then 
 

  
           ≠  0. 
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Proof. Part 1 ⇒ Part 2. If A is diagonalizable, then each Jordan block in J 

= Jordan CFA has size 1. Hence, by Theorem 11.3.8, mA(x) = 

∏   
   (x−λi), where λi‘s are the distinct eigenvalues of A. 

Part 2 ⇒ Part 3. Let mA(x) = ∏   
   (x − λi), where λi‘s are the distinct 

eigenvalues of A. Then, mA(x) = 0 if and only if x = λi, for some i, 1 ≤ i ≤ 

k. In that case, it is easy to verify that 
 

  
      ≠ 0, for each λi. 

Part 3 ⇒ Part 1. Suppose that for each α satisfying mA(α) = 0, one has 

 

  
      ≠ 0. 

Then, it follows that each zero of mA(x) has multiplicity 1. Also, using 

Corollary 11.3.6, each zero of mA(x) is an eigenvalue of A and hence by 

Theorem 7.2.8, the size of each Jordan block is 1. Thus, A is 

diagonalizable. 

We now have the following remarks and observations. 

Remark 11.4.11. 1. Let f(x) be a monic polynomial and A = 

Companion(f) be the companion matrix of f. Then, by Theorem 11.3.4) 

f(A) = 0 and no monic polynomial of smaller degree annihilates A. Thus 

PA(x) = mA(x) = f(x), where PA(x) is the characteristic polynomial and 

mA(x), the minimal polynomial of A. 

 

2. Let A ∈  n(ℂ). Then, A is similar to Companion(f), for some monic 

polynomial f if and only if mA(x) = f(x). 

Proof. Let B = Companion (f). Then, using Lemma 11.3. 7, we see that 

mA(x) = mB(x). But, by Remark 11.3.11.1, we get mB(x) = f(x) and hence 

the required result follows. 

Conversely, assume that mA(x) = f(x). But, by Remark 11.3.11.1, mB(x) 

= f(x) = PB(x), the characteristic polynomial of B. Since mA(x) = mB(x), 

the matrices A and B have the same largest Jordan blocks for each 

eigenvalue λ. As PB = mB, we know that for each λ, there is only one 

Jordan block in Jordan CFB. Thus, Jordan CFA = Jordan CFB and hence 

A is similar to Companion (f). 

 

Check your progress 

3. Define Jordan canonical form 
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4. Explain --Minimal polynomial divides the Characteristic Polynomial 

 

 

11.5 LET’S SUM UP 
 

The Jordan canonical form is convenient for computations. In particular, 

matrix powers and exponentials are straightforward to compute once the 

Jordan canonical form is known. 

11.6 KEYWORDS 
 

1. Linear Substitution--- The method of solving "by substitution" works 

by solving  one of the equations (you choose which one) for one of the 

variables (you choose which one), and then plugging this back into the 

other equation, "substituting" for the chosen variable and solving for the 

other. 

2. Canonical form – In mathematics and computer science, a canonical, 

normal, or standard form of a mathematical object is a standard way of 

presenting that object as a mathematical expression 

3. well-ordering principle - The well-ordering principle is a property 

of the positive integers which is equivalent to the statement of 

the principle of mathematical induction. 

4. Polynomial –  is an expression consisting of variables (also called 

indeterminates) and coefficients, that involves only the operations of 

addition, subtraction, multiplication, and non-negative integer 

exponents of variables 

5. Monic -- a monic polynomial is a single-variable polynomial (that is, 

a univariate polynomial) in which the leading coefficient (the 

nonzero coefficient of highest degree) is equal to 1. 

11.7 QUESTION FOR REVIEW 
 

1. Fix a positive integer k and a complex number λ. Then, prove that (a) 

Rank(Jk(λ) − λIk) = k − 1. 
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2. Let J be a Jordan matrix that contains ` Jordan blocks for λ. Then, 

prove that 

(a) Rank(J − λI) = n − `. 

3. Convert [
   
   
   

]to J3(0) and[
   
   
   

] to J2(0)   J1(0). 

4.   Find  A
10

. Can you find a formula for  A
k
 for any positive integer k, 

where 
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11.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide definition and example—11.1.2 

2. Provide statement of theorem and proof – 11.1.8 

3. Provide definition and explanation – 11.2.1 

4. Provide statement of corollary and prrof– 11.3.6 



68 

UNIT 12: BILINEAR FORMS 
 

STRUCTURE 

12.0 Objective 

12.1 Introduction 

12.2 Concepts 

12.3 Matrix Representation Of Bilinear Forms 

12.4 Change Of Base 

12.5 Positive Definite 

12.6 Geometry Associated To A Positive Form 

12.7 Bilinear Forms Over A Complex Vector Space 

12.8 Let‘s sum up 

12.9 Keywords 

12.10 Questions for review 

12.11 Suggested Readings 

12.12 Answers to Check Your Progress 

12.0 OBJECTIVE 
 

Understand the basic concept involved in Bilinear forms 

Understand the Matrix Representation of Bilinear Forms 

UNDERSTAND Change of Base and positive definite 

Comprehend the Geometry Associated To A Positive Form and Bilinear 

forms over a complex vector space 

12.1 INTRODUCTION 
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In mathematics, a bilinear form on a vector space V is a bilinear 

map V × V → K, where K is the field of scalars. In other words, a bilinear 

form is a function B : V × V → K that is linear in each argument 

separately  On a complex vector space, a bilinear form takes values in 

the complex numbers. In fact, a bilinear form can take values in 

any vector space, since the axioms make sense as long as vector 

addition and scalar multiplication are defined. 

12.2 CONCEPTS  
 

12.2.1Dot Product Definition : Let X, Y ∈ ℝn
 then we define 

(X · Y ) = X
t
Y = x1y1 + x2y2 + · · · + xnyn. 

The important features of the dot product are: Bilinearity 

((X1 + X2) · Y ) = (X1 · Y ) + (X2 · Y ) 

(X · (Y1 + Y2)) = (X · Y1) + (X · Y2) 

(cX · Y ) = c(X · Y ) = (X · cY ) 

Symmetry (X · Y ) = (Y · X) 

Positivity X ≠ 0 ⇒ (X · X) > 0 

Notice that bilinearity says that if we fix one element of the dot product 

then (− · Y ) : ℝn
 →ℝis a linear transformation. And it is this property 

which we will focus on first. 

12.2.2 Bilinear Forms. Let V be a vector space over F. We define a 

bilinear form to be a function f : V ×V → F such that 

(∀v1, v2, w ∈ V )f(v1 + v2, w) = f(v1, w) + f(v2, w) 

(∀v, w1, w2 ∈ V )f(v, w1 + w2) = f(v, w1) + f(v, w2) 

(∀v, w ∈ V, c ∈ F)f(cv, w) = cf(v, w) = f(v, cw) 

We will often use the notation 〈   〉 for f(v, w). A typical example of a 

bilinear form is the dot product on ℝn
. We shall usually write 

〈   〉instead of f(x, y) for simplicity and we shall also identify each 1 × 1 

matrix with its unique entry. 

12.2.3 Symmetric Bilinear Form Definition: We say a bilinear form 

〈 〉 is Symmetric if 

    

   (∀v, w) 〈    〉  〈    〉 

12.2.4 Skew-Symmetric Bilinear Form Definition: 
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We say a bilinear form 〈 〉 is Skew-Symmetric if 

 

  (∀v) 〈    〉= 0 

Lemma 12.2.5 Let V be a vector space over a field F of characteristic ≠ 

2. Let 〈 〉 be a bilinear form on V . Then 〈 〉 is skew-symmetric if and only 

if 

   (∀v, w ∈ V ) 〈    〉= − 〈   〉 

Proof. ⇒: Well we then know that 

 

 〈        〉   〈   〉  〈   〉  〈   〉  〈   〉  

  〈   〉  〈   〉 

So we have 0 = 〈   〉   〈   〉 and hence 〈   〉= −〈   〉 

⇐: Well we then know that 〈   〉 = −〈   〉and so 2 〈   〉= 0. So either 2 

= 0 or 〈   〉= 0. But we are assuming that the characteristic isn‘t 2 and 

so we must have 〈   〉= 0. 

It is for this last part that we need the characteristic isn‘t 2. In the case of 

characteristic 2 we see that the condition that 〈    〉 = −hw, vi is the 

same as saying that 〈  〉 is symmetric because a = −a for all a. But, as we 

will see there are in general skew symmetric matrices over fields of 

characteristic 2 which are not symmetric. 

Hence the above definition is the right one. 

 

12.3 MATRIX REPRESENTATION OF 

BILINEAR FORMS 
 

The most common examples of bilinear forms are those which act on the 

space F
n
 of column vectors as follows. 

Let A be an n × n matrix. Then. 

 

〈   〉 = X
t
AY 

notice that this is a 1×1 matrix. The first thing we need to check is that 

this is in fact a bilinear form. 
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Lemma 12.3.1. Let V an n-dimensional vector space over F and let X, Y 

∈ V be represented as column vectors relative to some basis. Further let 

A be an n × n matrix in F. Then hX, Y i = XtAY is a bilinear form. 

Proof. We need to check the following. 

• < (X1+X2), Y >= (X1+X2)
t
AY = (  

 +  
 )AY = (  

  AY )+(   
  AY ) = 

〈    〉  〈    〉 

 

•〈         〉                                  

 〈    〉  〈    〉 

 

• cX, Y = (c  AY ) = (  AcY ) = c 〈   〉= 〈    〉 

And so in fact h, i is a linear transform. Now, given a finite dimension 

vector space we want to show that any given bilinear form is of the 

above form. 

Bilinear forms have matrixes 

Lemma 12.3.2. Let 〈 〉be a bilinear form on V , a finite dimensional 

vector space and lets let B = {b1,··· , bn} be a basis for V . Then there is 

a matrix A such that 〈   〉= =   AY where X, Y are considered column 

vectors relative to the basis B. 

Proof. We want to show that there is a matrix A such that 

 

 ∀{         ∈   } ⊆    〈           〉   〈           〉

  〈   ∈         ∈     〉 

Well we know that any matrix we come up with will correspond to a 

bilinear form. So in particular if we can come up with a matrix which 

agrees with our bilinear form on the basis elements then the bilinear form 

associated to the matrix must be the one we want. 

Specifically what we need is A = (ai,j) where ai,j = 〈     〉. Then by 

bilinearity XtAY = hX, Y i for all vectors X, Y . 

Definition 12.3.3 . We say that A = (〈     〉) is the Matrix Associated to 

the Bilinear form 〈 〉 relative to the basis {b1,··· , bn}. 

 

Check your rporgress 

1. Define Symmetric Bilinear Form & Skew Symmetric Bilinear Form 
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2. What do you understand by Bilinear forms have matrixes? 

 

 

12.4 CHANGE OF BASE 
 

One of the most important questions regarding these matrixes is what 

happens when we change bases. This leads us to the following theorem. 

Theorem 12.4.1. Let A be the matrix associated to a bilinear form 

〈 〉with respect to a basis. Then the matrixes which represent the same 

form with respect to different basis are those of the form  

  QAQ
t 
 for some Q ∈ GLn(F).

 

Proof. Let P be the element of GLn(F) which represents the linear 

transformation which changes the base. So we have  

X*  = PX, Y* = PY and hX, Y i = 〈     〉 (as X,    and Y,    are just 

different representation of the same vectors) 

We then know that 

  〈   〉                                                          

But we also know that 

 

〈   〉   〈     〉             

for A* the matrix representing the bilinear for relative to the new basis. 

Hence letting Q = (P 
−1

)
t
 we must have 

    A* = QAQ
t
. 

12.4.2 Dot product matrix: 

Now lets consider what happens to the dot product if we change basis. 

Recall that 

   (X · Y ) = X
t
Y 

And so we have that the matrix associated to the standard dot product is 

just the identity matrix. 

12.4.3 Orthogonal.  

Recall that a matrix is said to be orthogonal if 

 P
t
P = I or P 

−1
 = P

t
. 

Lemma12.4.3.1 . If you change base relative to an orthogonal change of 

base then the dot product is preserved. 
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Proof. Let P be the orthogonal change of base. Well I is the matrix 

associated with the identity so by previous theorems this means that the 

matrix associated with the dot product under the new basis is 

(P 
−1

)
t
I(P 

−1
) = (P 

t
)
t
IP

t
 = PP

t
 = I 

So changing the basis by an orthogonal matrix preserves the dot product. 

Similarly we have 

Lemma 12.4.3.2 The matrixes which represent the dot product are those 

of the form PP
t 
for P ∈ GLn(R). 

Proof. By previous theorem. 

Recall the three conditions on the dot product which were important. 

First off was Bilinearity. But this isn‘t a helpful as we know that X
t
AY is 

bilinear for every A. The next is symmetry. This is in fact useful. 

12.4.4 Definition Symmetric Matrix. We say a matrix is symmetric if A 

= A
t
. 

Lemma 12.4.4.1 A bilinear form is symmetric if and only if the matrix 

associated to it is symmetric. 

Proof. Symmetry is equivalent to 

 

〈    〉                  〈   〉 

 

but we have (  AX) = (  AX)
t
 = X

t
A

t
Y because the transpose of a 1 × 1 

matrix is itself. 

Hence being a symmetric bilinear for is equivalent to 

 

  ∀                  

and this is equivalent to A = A
t
. 

The third condition is that (X · X) > 0 if X ≠ 0 (Positivity). 

 

12.5 POSITIVE DEFINITE: 
 

Definition 12.5.1 :We call a bilinear form 〈  〉  on V Positive Definite if 

   (∀v ∈ V, v ≠ 0) 〈   〉> 0 

12.5.2 Orthonormal basis: Given a bilinear form 〈  〉 on a vector space 

V we say that two vectors v, w ∈ V are orthogonal (v ⊥ w) if 〈   〉 = 0 
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Let B = hv1, · · · , vni be a basis for V . We then say that B is an 

orthonormal basis if 

 

 ∀      〈     〉      

 ∀  〈     〉       

Lemma 12.5.3. If B is an orthonormal basis for V with respect to  

〈  〉 then the matrix associated to  〈  〉  relative to B is the identity. 

Proof. Immediate. Now we are going to show that for any positive 

definite bilinear form an orthonormal basis exists. 

 

Orthonormal basis always exist for symmetric p 

Theorem 12.5.4. Let 〈  〉 be a positive definite symmetric bilinear form 

on a finite dimensional vector space V . Then there is an orthonormal 

basis for V 

Proof. The method we are going to use is called the Gram-Schmidt 

procedure We are going to start with a basis B = (v1,··· , vn) 

Step 1: The first step will be to normalize v1. Now we know that 

〈       〉      〈     〉 

 

But, because we know that that 〈  〉  is positive definite, 

      〈     〉> 0 

 and so we know phv1, v1i is a real number and hence if we let 

     w1 = √〈     〉 v1 

then we see that 〈     〉> = 1. 

Step 2a: Now we want to look for a linear combination of v2, w1 which 

is orthogonal to w1. The value is 

   w = v2 – 〈     〉w1 

because 

  〈     〉   〈      〉   〈     〉 〈     〉      

Step 2b: Then normalize w and call that vector w2. Further (w1, w2, v3, . 

. . , vn) is a basis for V . ··· 

Step k a: Suppose we have defined orthonormal vectors (w1, . . . , wk−1) 

and that (w1, . . . , wk−1, vk, . . . , vn) is a basis. 

Then we want to look for a linear combination of vk, w1, . . . , wk−1 

which is orthogonal to wi for all i < k. The value is 
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w = vk − 〈     〉w1 + · · · + 〈        〉wk−1 

because 

〈     〉= 〈      〉−〈      〉 〈     〉 +· · ·+〈        〉 〈       〉 

 

But 〈      〉= 0 if i ≠ j and 〈      〉= 1 so we have 

 

〈     〉 = 〈      〉− 〈     〉 〈      〉= 0 

 

Step kb: Then normalize w and call that vector wk. Further vk ∈ 

Span(w1, . . . , wk, vk+1, . . . , vn) and so (w1, . . . , wk, vk+1, . . . , vn) is a 

basis. Hence after iterating this process n times we see that (w1, . . . , wn) 

is an orthonormal basis for V . We then have the following theorem. 

12.5.5 . The following are equivalent for a real n × n matrix 

(1) A represents the dot product. 

(2) There is an invertible matrix P ∈ GLn(R) such 

that A = P
t
P 

(3) A is symmetric and positive definite. 

Proof. We have already shown that (1) and (2) are equivalent. 

Further, the fact that (1) → (3) is by virtue of the fact that the dot product 

satisfies positivity and symmetry. So all that is left is to show that (3) → 

(2). Well the first thing to notice is that if A is positive definite then so is 

the form 〈   〉= X
t
AY . So in particular there is an orthonormal basis B' 

with respect to 〈  〉  . Now we know then that with respect to the basis B' 

the matrix associated to 〈  〉  is I (because B' is orthonormal). But at the 

same time we know that if P is the matrix associated to the change of 

base from B' to the standard basis of ℝn
 then 

A = P 
t
A'P = P

t
P and so A satisfies (2). 

12.6 GEOMETRY ASSOCIATED TO A 

POSITIVE FORM 
 

Suppose we have a bilinear form 〈  〉   on a real vector space. Then, it is 

possible to define the length of a vector as follows. 
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Euclidian space Definition 12.6.1. Let v ∈ V and let 〈  〉    be a 

positivedefinite bilinear form. Then we can define 

         √ 〈   〉  

We often call a real vector space with a length a Euclidian space 

Lemma 12.6.2. Let 〈  〉   be a positive definite bilinear form on a real 

vector space V . Then we have 

(Schwarz Inequality) |〈   〉| ≤ |v| · |w| 

(Triangle Inequality) |v + w| ≤ |v| + |w| 

Now given a subspace of W we have that Restriction. 

Lemma 12.6.3. Let V be a vector space and 〈  〉   a bilinear form on V . 

Then if W ⊆ V is a subspace then 〈  〉   restricts to a bilinear form on h,i. 

Further if h,i is positive definite or symmetric on V then 〈  〉   is positive 

definite or symmetric on W 

12.6.4 Inner product:  An inner product on a real vector space V is a 

bilinear form which is both positive definite and symmetric. 

12.6.5Angles and length: Suppose that h ,i is an inner product on a real 

vector space V . Then one may define the length of a vector v ∈ V by 

setting 

 

 

and the angle θ between two vectors v, w ∈ V by setting 

 

 

 

These formulas are known to hold for the inner product on ℝn
. 

 

 

Then w1, w2 are orthogonal and have the same span as v1, v2. 

Proceeding by induction, suppose w1, w2, . . . , wk are orthogonal and  

have the same span as v1, v2, . . . , vk. Once we then define 
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we end up with vectors w1, w2, . . . , wk+1 which are orthogonal and 

have the same span as the original vectors v1, v2, . . . , vk+1. Using the 

formula from the last step repeatedly, one may thus obtain an orthogonal 

basis w1, w2, . . . , wn for the vector space V. 

Example: We find an orthogonal basis of R3, starting with the basis 

 

 

 

 

 

We define the first vector by w1 = v1 and the second vector by 

 

Then w1, w2 are orthogonal and we may define the third vector by 

 

 

 

 

12.7 BILINEAR FORMS OVER A 

COMPLEX VECTOR SPACE 
 

Bilinear forms are defined on a complex vector space in the same way 

that they are defined on a real vector space. However, one needs to 

conjugate one of the variables to ensure positivity of the dot product. The 

complex transpose of a matrix is denoted by A  =   ̅̅ ̅ and it is also known 

as the adjoint of A. One has x x ≥ 0 for all x ∈ ℂn
. 
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Check your progress 

3. What is symmetric bilinear form? 

 

4. Explain Orthonormal basis always exist for symmetric p 

 

 

12.8 LET’S SUM UP 
 

These theories also have interesting applications in classical coding 

theory. As mentioned above, the main difference lies in the structure of 

the underlying association schemes, which makes the analysis 

considerably more difficult in the case of symmetric bilinear forms. 

 

12.9 KEYWORDS 
 

1. Vector Space - A vector space (also called a linear space) is a 

collection of  objects called vectors, which may be added together 

and multiplied ("scaled") by numbers, called scalars. 
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2. Transpose matrix - In linear algebra, the transpose of a matrix is an 

operator which flips a matrix over its diagonal, that is it switches the 

row and column indices of the matrix by producing another matrix  

3. Complex Matrix : A square complex matrix whose transpose is 

equal to the matrix with every entry replaced by its complex 

conjugate (denoted here with an overline) is called a Hermitian 

matrix (equivalent to the matrix being equal to its conjugate 

transpose); 

4. Span - In linear algebra, the linear span (also called the linear hull or 

just span) of a set S of vectors in a vector space is the smallest linear 

subspace that contains the set. 

12.10 QUESTION FOR REVIEW 
 

1. Prove that the sum of two bilinear forms is a bilinear form 

2.  Prove that the product of scalar and  bilinear form is a bilinear form. 

3. Explain Bilinear forms over a complex vector space 
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12.12 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide definition and example—12.1.3 & 12.1.4 

2. Provide statement of lemma and proof – 12.2.2 

3. Provide statement of theorem  and proof – 12.3.4.1 

4. Provide statement of theorem  and proof– 12.4.4 
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UNIT 13: ANNIHILATING 

POLYNOMIALS & DECOMPOSITION 

- I 
 

STRUCTURE 

13.0 Objective 

13.1 Introduction 

13.2 Concepts 

13.3 Annihilating Polynomials  

13.4 Cayley-Hamilton Theorem 

13.5 Simultaneous Triangulation And Simultaneous Diagonalization 

13.6 Let‘s sum up 

13.7 Keywords 

13.8 Questions for review 

13.8 Suggested Readings 

13.10 Answers to Check Your Progress 

13.0 OBJECTIVE 
 

 Know about the polynomials over the field F, the degree of 

polynomial, monic polynomial, annihilating polynomials as well as 

minimal polynomials. 

 Understand that the linear operator is annihilated by its characteristic 

polynomial. 

 Understand that we consider all monic polynomials with coefficients 

in F and the degree 

of the minimal polynomial is the least positive integer such that a 

linear relation is 

obtained annihilated. 
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 Know the structure of the triangular form of a matrix of a linear 

operator T on a space V 

over the field F. 

 Understand that we can diagonalize two or more commuting matrices 

simultaneously. 

 Know that the matrix of a linear operator T commutes with that of a 

polynomial of a linear operator T. 

 

13.1 INTRODUCTION 
 

In this unit we investigate more properties of a linear transformation. We 

define certain terms like monic polynomial, minimal polynomial as well 

as annihilating polynomial and characteristic polynomial. It is seen that 

the theorem of Cayley-Hamilton in this unit helps us in narrowing down 

the reach for the minimal polynomials of various operators.In this unit 

we are again exploring the properties of a linear operator on the spaceV 

over the field F. In an upper triangular or lower triangular matrix the 

elements in the diagonal are the characteristic values. 

13.2 CONCEPTS 
 

13.2.1 Polynomial Over F:  Let F(x) be the subspace of Fn spanned by 

vectors 1, x, x2..... An element of F(x) is called a polynomial over F. 

 

13.2.2 Degree of a Polynomial: F(x) consists of all (finite) linear 

combinations of x and its powers. If f  is a non-zero polynomial of the 

form 

 

 

such that fn ≠ 0 and n ≥ 0 and fn = 0 for all integers k > n; this integer is 

obviously unique and is called the degree of f. 

The scalars f0, f1, f2, …,fn are sometimes called the coefficients of f in the 

field F. 
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13.2.3 Monic Polynomial: A polynomial f (x) over a field F is called 

monic polynomial if the coefficient of highest degree term in it is unity 

i.e fn = 0 

13.2.4 Annihilating Polynomials: Let A be n n matrix over a field F and 

f(x) be a polynomial over F. Then if f(A) = 0. Then we say that the 

polynomial f(x) annihilates the matrix A. 

 

13.3 ANNIHILATING POLYNOMIALS 
 

It is important to know the class of polynomials that Annihilate T. 

Suppose T is a linear operator on V, a vector space over the field F. If p 

is a polynomial over F, then p(T) is again a linear operator on V. If q is 

another polynomial over F, then 

 

(p + q) (T)  = p(T) + q(T)   

(pq) (T) = p (T) q (T)  

 

Therefore, the collection of polynomials p which annihilate T, in the 

sense that 

     p (T) = 0, 

is an ideal in the polynomial algebra F[x]. It may be the zero ideal, i.e., it 

may be that T is not annihilated by any non-zero polynomial. But, that 

cannot happen if the space V is finite dimensional. 

Suppose T is a linear operator on the n-dimensional space V. Look at the 

first (n2 + 1) powers of T:  

     I, T, T
2
, T

n2
 

This is a sequence of n
2
 + 1 operators in L(V, V), the space of linear 

operators on V. The space L(V, V,) has dimension n
2
. Therefore, that 

sequence of n
2
 + 1 operators must be linearly dependent. i.e., we have 

 

 

for some scalars ci not all zero. So, the ideal of polynomials which 

annihilate T contains a nonzero polynomial of degree n
2
 or less. 

Definition 13.3.1 . Let T be a linear operator on a finite-dimensional 

vector space V over the field F. The minimal polynomial for T is the 
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(unique) monic generator of the ideal of polynomials over F which 

annihilate T. 

The name ‗minimal polynomial‘ stems from the fact that generator of a 

polynomial ideal is characterized by being the monic polynomial of 

minimum degree in the ideal. That means that the minimal polynomial p 

for the linear operator T is uniquely determined by these three properties: 

1. p is a monic polynomial over the scalar field F. 

2. p(T) = 0 

3. No polynomial over F which annihilates T has smaller degree than p 

has. 

If A an       matrix over F, we define the minimal polynomial for A in 

an analogous way, as the unique monic generator of the ideal of all 

polynomials over F which annihilate A. If the operator T is represented 

in some ordered basis by the matrix A, then T and A have the same 

minimal polynomial. That is because f(T) is represented in the basis by 

the matrix f(A) so that f(T) = 0 if and only if f(A) = 0. 

From the last remark about operators and matrices it follows that similar 

matrices have the Notes same minimal polynomial. That fact is also clear 

from the definitions because 

 

 

 

for every polynomial f. There is another basic remark which we should 

make about minimal polynomials of matrices. 

Suppose that A is an n n matrix with entries in the field F. Suppose that 

F1 is a field which contains F as a subfield. (For example, A might be a 

matrix with rational entries, while F1 is the field of real numbers. Or, A 

might be a matrix with real entries, while F1 is the field of complex 

numbers.) We may regard A either as an n n matrix over F or as an n n 

matrix over F1. On the surface, it might appear that we obtain two 

different minimal polynomials for A. Fortunately that is not the case; and 

we must see why. What is the definition of the minimal polynomial for 

A, regarded as an n n matrix over the field F? We consider all monic 

polynomials with coefficients in F which annihilate A, and we choose the 

one of least degree. If f is a monic polynomial over F: 
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then f(A) = 0 merely says that we have a linear relation between the 

powers of A: 

 

The degree of the minimal polynomial is the least positive integer k such 

that there is a linear relation of the form (2) between the powers I, A,  . 

 A
k
 Furthermore, by the uniqueness of the minimal polynomial, there 

is for that k one and only one relation of the form (2); i.e., once the 

minimal k is determined, there are unique scalars a a 0 1 , ,  k in F 

such that (2) holds. They are the coefficients of minimal polynomial. 

Now (for each k) we have in (2) a system of n
2
 linear equations for the 

‗unknowns‘a0  , , . ak – 1  Since the entries of A lie in F, the coefficients 

of the system of equations (2) are in F. Therefore, if the system has a 

solution with a a 0 1 , ,  k in F1 it has a solution with a a 0 1 , ,  k in 

F. It should now be clear that the two minimal polynomials are the same. 

What do we know thus far about the minimal polynomial for a 

linearoperator on an n-dimensional space? Only that its degree does not 

exceed n2. That turns out to be a rather poor estimate, since the degree 

cannot exceed n. We shall prove shortly that the operator is annihilated 

by its characteristic polynomial. First, let us observe a more elementary 

fact. 

Theorem 13.3.2: Let T be a linear operator on an n-dimensional vector 

space V [or, let A be an n n matrix]. The characteristic and minimal 

polynomials for T [for A] have the same roots, except for multiplicities. 

Proof. Let p be the minimal polynomial for T. Let c be a scalar. What we 

want to show is that p(c) = 0 if and only if c is a characteristic value of T. 

First, suppose p(c) = 0. Then      p = (x – c)q 

where q is a polynomial. Since deg q < deg p, the definition of the 

minimal polynomial p tells us that q (T) ≠ 0. Choose a vector  such that 

q(T)  ≠ 0. Let  = q(T) . Then 
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     0 = p(T) 

         = (T – cI)q(T) 

        = (T – cI) 

and thus, c is a characteristic value of T. Now, suppose that c is a 

characteristic value of T, say T = c with 0. So 

     p(T) = p(c)  . 

Since p(T) = 0 and  ≠ 0, we have p(c) 0. Let T be a diagonalizable 

linear operator and let c1,  ck be the distinct characteristic values of 

T. Then it is easy to see that the minimal polynomial for T is the 

polynomial. 

 p = (x – c1)  (x – ck). 

 

If  is a characteristic vector, then one of the operators T – c1I,  , T – 

ckI sends  into 0. Therefore 

(T – c1I),  , (T – ckI)  = 0 

for every characteristic vector . There is a basis for the underlying 

space which consists of characteristic vectors of T; hence 

    p(T) = (T – c1I),  , (T – ckI) = 0 

What we have concluded is this. If T is a diagonalizable linear operator, 

then the minimal polynomial for T is a product of distinct linear factors. 

As we shall soon see, that property characterizes diagonalizable 

operators. 

Check your progress 

1. Define degree of Polynomial & Monic Polynomial 

 

2. State the properties of Minimal Polynomial 

 

 

13.4 CAYLEY-HAMILTON THEOREM 
 

13.4.1 Theorem: Let T be a linear operator on a finite dimensional 

vector space V. If f is the characteristic polynomial for T, then f(T) = 0; 
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in other words, the minimal polynomial divides the characteristic 

polynomial for T. 

Proof: The proof, although short, may be difficult to understand. Aside 

from brevity, it has the virtue of providing an illuminating and far from 

trivial application of the general theory of determinants. Let K be the 

commutative ring with identity consisting of all polynomials in T. Of 

course, K is actually a commutative algebra with identity over the scalar 

field. Choose an ordered basis {1, …, n} for V, and let A be the matrix 

which represents T in the given basis. Then 

 

 

 

These equations may be written in the equivalent form 

 

 

 

Let B denote the element of K
nn 

with entries  

 

 

 

When n = 2 

 

 

 

and 

 

 

 

 

 

 since f is the determinant of the matrix xI – A whose entries are the 

polynomials ( ) .  
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We wish to show that f(T) = 0. In order that f(T) be the zero operator, it 

is necessary and sufficient that (det B)k = 0 for k = 1, , n. By the 

definition of B, the vectors 1,  n satisfy the equations 

 

When n = 2, it is suggestive to write (3) in the form 

 

 

 

 

In this case, the classical adjoint, adj B is the matrix 

 

 

 

And 

 

 

 

Hence, we have 

 

 

 

 

 

 

In the general case, let B  = adj B. Then by (3) 

 

 

 

 

For each pair k, i, and summing on i, we have 
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Now B  B = (det B)I, so that 

 

 

 

 

Therefore 

 

 

 

 

 

The Cayley-Hamilton theorem is useful to us at this point primarily 

because it narrows down the search for the minimal polynomials of 

various operators. If we know the matrix A which represents T in some 

ordered basis, then we can compute the characteristic polynomial f. We 

know that the minimal polynomial p divides f and that the two 

polynomials have the same roots. There is no method for computing 

precisely the roots of a polynomial (unless its degree is small); however, 

if f factors 

 

That is all we can say in general. If f is the polynomial (4) and has degree 

n, then for every polynomial p as in (5) we can find an n n matrix which 

has f as its characteristic polynomial and p as its minimal polynomial. 

We shall not prove this now. But, we want to emphasize the fact 
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that the knowledge that the characteristic polynomial has the form (4) 

tells us that the minimal polynomial has the form (5), and it tells us 

nothing else about p. 

Example: Let A be the     (rational) matrix 

 

 

The powers of A are easy to compute 

 

 

 

 

 

 

 

 

 

 

Thus A
3
 = 4A, i.e., if p = x

3
 – 4x = x(x + 2) (x – 2), then p(A) = 0. The 

minimal polynomial for A must divide p. That minimal polynomial is 

obviously not of degree 1, since that would mean that A was a scalar 

multiple of the identity. Hence, the candidates for the minimal 

polynomial are: p, x(x + 2), x(x – 2), x
2
 – 4. The three quadratic 

polynomials can be eliminated because it is obvious at a glance that A
2 
≠ 

- 2A , A
2 

≠ 2A, A
2 

≠ 4I . Therefore p is the minimal polynomial for A. In 

particular 0, 2, and – 2 are the characteristic values of A. One of the 

factors x, x – 2, x + 2 must be repeated twice in the characteristic 

polynomial. Evidently, rank (A) = 2. Consequently there is a two-

dimensional space of characteristic vectors associated with the 

characteristic value 0. From Theorem 2, it should now be clear that the 

characteristic polynomial is x
2
 (x

2
 – 4) and that A is similar over the field 

of rational numbers to the matrix 
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Example: Verify Cayley-Hamilton‘s theorem for the linear 

transformationT represented by the matrix A. 

  

Solution: The characteristic polynomial is given by 

 

 

 

 

 

 

 

Now 
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where 0 being null matrix. So f(A) = 0 

 

 

 

13.5 SIMULTANEOUS TRIANGULATION 

AND SIMULTANEOUS 

DIAGONALIZATION 
 

Let V be a finite-dimensional space and let   be a family of linear 

operators on V. We ask when we can simultaneously triangulate or 

diagonalize the operators in  , i.e., find one basis  such that all of the 

matrices [T], T in  , are triangular (or diagonal). In the case of 

diagonalization, it is necessary that   be a commuting family of 

operators: UT = TU for all T, U in  . That follows from the fact that all 

diagonal matrices commute. Of course, it is also necessary that each 

operator in   be a diagonalizable operator. In order to simultaneously 

triangulate, each operator in   must be triangulable. It is not necessary 

that   be a commuting family; however that condition is sufficient for 

simultaneous triangulation (if each T can be individually triangulated).  

The subspace W is invariant under (the family of operators)   if W is 

invariant under each operator in  . 

13.5.1 Lemma: Let   be a commuting family of triangulable linear 

operator on V. Let W be a proper subspace of V which is invariant under 

 . There exists a vector  in V such that 

(a)  is not in W; 

(b) for each T in  , the vector T is in the subspace spanned by  and 

W. 

Proof: It is no loss of generality to assume that   contains only a finite 

number of operators, because of this observation. Let {T1,...,Tn) be a 
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maximal linearly independent subset of  , i.e., a basis for the subspace 

spanned by  . If  is a vector such that (b) holds for each Ti, then (b) 

will hold for every operator which is a linear combination of T1,..., Tr. 

We can find a vector 1 (not in W) and a scalar c1 such that (T1 – c1I)1 

is in W. Let V1 be the collection of all vectors  in V such that (T1 – 

c1I) is in W. Then V1 is a subspace of V which is properly larger than 

W. Furthermore, V1 is invariant under  , for this reason. If T commutes 

with T1, then 

 

 

If  is in V1, then (T1 – c1I) is in W. Since W is invariant under each T 

in  , we have T(T1 – c1I) in W, i.e., T in V1, for all  in V1 and all T 

in  . Now W is a proper subspace of V1. Let U2 be the linear operator 

on V1 obtained by restricting T2 to the subspace V1. The minimal 

polynomial for U2 divides the minimal polynomial for T2. We obtain a 

vector 2 in V1 (not in W) and a scalar c2 such that (T2 – c2I) 2 is in W. 

Note that 

(a) 2 is not in W; 

(b) (T1 – c1I)2 is in W; 

(c) (T2 – c2I)2 is in W. 

Let V 2 be the set of all vectors  in V1 such that (T2 – c2I) is in W. 

Then V2 is invariant under  . Apply the restriction of T3 to V2. If we 

continue in this way, we shall reach a vector  = r (not in W) such that 

(Tj – cjI) is in W, j = 1,..., r. 

Theorem 13.5.2: Let V be a finite-dimensional vector space over the 

field F. Let   be a commuting family of triangulable linear operators on 

V. There exists an ordered basis for V such that every operator in  is 

represented by a triangular matrix in that basis. 

Corollary 13.5.3: Let   be a commuting family of n × n matrices over 

an algebraically closed field F. There exists a non-singular n × n matrix P 

with entries in F such that P
–1 

AP is upper-triangular, for every matrix A 

in  . 
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Theorem 13.5.4: Let F be a commuting family of diagonalizable linear 

operators on the finitedimensional vector space V. There exists an 

ordered basis for V such that every operator in  is represented in that 

basis by a diagonal matrix. 

Proof: We could prove this theorem by adapting the lemma before 

Theorem 1 to the diagonalizable case. However, at this point it is easier 

to proceed by induction on the dimension of V. 

If dim V = 1, there is nothing to prove. Assume the theorem for vector 

spaces of dimension less than n, and let V be an n-dimensional space. 

Choose any T in   which is not a scalar multiple of the identity. Let 

c1,..., ck be the distinct characteristic values of T, and (for each i) let Wi 

be the null space of T – ciI. Fix an index i. Then Wi is invariant under 

every operator which commutes 

with T.  

Let  i be the family of linear operators on Wi obtained by restricting the 

operators in   to the (invariant) subspace Wi. Each operator in  i is 

diagonalizable, because its minimal polynomial divides the minimal 

polynomial for the corresponding operator in    Since dim Wi < dim V, 

the operators in  i can be simultaneously diagonalized. In other words, 

Wi has a basis i which consists of vectors which are simultaneously 

characteristic vectors for every operator in  i. 

Since T is diagonalizable,  = (1,..., k) is a basis for V. That is the 

basis we seek. 

If we consider finite dimensional vector space V over a complex field F, 

then there is a basis such that the matrix of the linear operator T is 

diagonal. This is due to the key fact that every complex polynomial of 

positive degree has a root. This tells us that every linear operator has at 

least one eigenvector. 

From the theorem above we now have that every complex n × n matrix A 

is similar to an upper triangular matrix i.e. there is a matrix P, such that 

P–1 AP is upper triangular.  

Equally we also state that for a linear operator T on a finite dimensional  
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complex vector space V, there is a basis of V such that the matrix of T 

with respect to that basis is upper triangular. 

Let V contain an eigenvector of A, call it v1. Let be its eigen value. We 

extend (v1) to a Basis = (v1, v2, …, vn) for V. There will be a matrix P 

for which the new matrix A = P
–1

 A P has the block form. 

where D is an (n – 1) × (n – 1) matrix, is a 1 × 1 matrix of the restriction 

of T to W (v1). Here O denotes n – 1 zeros below in the first column. By 

induction on n, we may assume that there exists a matrix Q such that Q
–1

 

D Q is upper triangular. If we denote Q1 by the relation 

 

 

then 

 

 

is the upper triangular and thus 

                            A" = (P Q1)
–1 

A (P Q1). 

Knowing one vector v corresponding to the characteristic value we can 

find a linear operator P and then Q1 to find A" . 

Check your progress 

3. State the Cayley-HamiltonTheorem 

 

4. Explain Simultaneous Triangulation and Simultaneous 

Diagonalization  
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13.6 LET’S SUM UP 
 

In this unit certain terms related to linear operator T are defined, i.e., the 

monic polynomial,bannihilating polynomials, minimal polynomials as 

well as characteristic polynomials. With the help of Cayley-Hamilton 

theorem it becomes easier to search for the minimal polynomials of 

various operators. In this unit we are dealing with matrices that commute 

with each other. In a triangular matrix the main diagonal has the entries 

of the characteristic values and it has not zero entries in the upper part of 

the diagonal only or non-zero entries in the lower of the main diagonal. If 

two or more matrices commute then we can diagonalize them 

simultaneously. 

13.7 KEYWORDS 
 

1. Annihilating Polynomial: Annihilating polynomial f(x) over the field 

F is such that for a matrix 

A of n n matrix over the field f(A) = 0, then we say that the polynomial 

annihilates the matrix. 

If a linear operator T is represented by the matrix then f(T) = 0 gives us 

the annihilating polynomial 

for the linear operator T. 

2. Monic Polynomial: The monic polynomial is a polynomial f(x) whose 

coefficient of the highest 

degree in it is unity. 

3. Diagonalizable: Each operator in   i is diagonalizable, because its 

minimal polynomial divides 

the minimal polynomial for the corresponding operator in  . 

4. Ordered Basis: There exists an ordered basis for V such that every 

operator in   is represented 

by a triangular matrix in that basis. 

 

13.8 QUESTION FOR REVIEW 
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1. Let A be the following 3 3 matrix over F; 

 

Find the characteristic polynomial for A and also the minimal 

polynomial for A. 

2. Let A be the following 3 3 matrix over F; 

 

Find the characteristic polynomial for A and also find the minimal 

polynomial for A. 

3. Find an invertible real matrix P such that P–1AP and P–1BP are both 

diagonal, where A and 

B are the real matrices 

 

 

 

4.Let   be a commuting family of 3 × 3 complex matrices. How many 

linearly independent  

matrices can   contain? What about the n × n case? 
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13.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide definition 13.1.2 & 13.1.3 

2. Provide 3 properties of minimal polynomial – 13.2.1 

3. Provide statement of theorem – 13.3.1 

4. Provide statement of theorem and proof related to concept– 13.4. 
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UNIT 14: ANNIHILATING 

POLYNOMIALS & DECOMPOSITION 

- II 
 

STRUCTURE 

14.0 Objective 

14.1 Introdcation 

14.2 Direct-Sum Decompositions 

14.3 Invariant Direct Sums 

14.4 The Primary Decomposition Theorem 

14.5 Let‘s sum up 

14.6 Keywords 

14.7 Questions for Review 

14.8 Suggested Readings 

14.9 Answers to Check Your Progress 

14.0 OBJECTIVE 
 

 Understand the meanings of invariant subspaces as well as 

decomposition of a vector 

space into the invariant direct sums of the independent subspaces. 

Know the projection operators and their properties 

See that there is less emphasis is on matrices and more attention is given 

to subspaces. 

 See that the vector space V is decomposed as a direct sum of the 

invariant subspaces under some linear operator T. 

 Understand that the linear operator induces a linear operator Ti on 

each invariant subspaces Wi by restriction. 

 Know that if i is the vector in the invariant subspace Wi then the 

vector i in the finite 
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vector space V is obtained as a linear combinations of its projections i 

in the subspace Wi. 

 considering a linear operator T on a finite dimensional space the 

minimal polynomial for the linear operator is a product of a number of 

irreducible monic polynomials   
   over the field F where ri are positive 

integers. 

 Know that this structure of the minimal polynomial helps in 

decomposing the space V as 

the direct sum of the invariant subspaces Wi. 

 Understand that the general linear operatorT induces a linear operator 

Ti on Wi by restriction and the minimal polynomial for Ti is the 

irreducible   
   

14.1 INTRODUCTION 
 

This unit and the next units are slightly more complicated than the other 

previous units.The ideas of invariant subspaces and their relations with 

the vector space V is obtained. The ideas of projection operators and 

their properties are introduced. These ideas will help in expressing the 

given linear operator T in terms of the direct sums of the operators T1j 

TK as seen in the next unit. Here the vector space is decomposed as the 

direct sum of the invariant subspaces Wi. The linear operator induces a 

linear operator Ti for each invariant subspaces Wi. The method of 

finding the projection operators and their properties is discussed. The 

direct sum decomposition of the vector space V for a linear operator T in 

terms of invariant subspaces. The general linear operator T induces a 

linear operator Ti on the invariant subspace, the minimal polynomial of 

Ti is the   
   This structure of the induced linear operator helps in 

introducing the projection operators Ei. These projections associated 

with the primary decomposition of T, then are polynomials in T, and they 

commute each will an operator that commutes with T. 

14.2 DIRECT-SUM DECOMPOSITIONS 
 

14.1.1 Definition: Let W1,..., Wk be subspaces of the vector space V. 

We say that W1,..., Wkare independent if  
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   1 + ... + k = 0,     i in Wi 

implies that each i is 0. For k = 2, the meaning of independence is {0} 

intersection, i.e., W1 and W2 are independent if and only if W1  W2 = 

{0}. If k > 2, the independence of W1,..., Wk says much more than W1  

...  Wk = {0}. It says that each Wj intersects the sum of the other 

subspaces Wi only in the zero vector. 

The significance of independence is this. Let W = W1 + ... + Wk be the 

subspace spanned by W1,...,Wk. Each vector  in W can be expressed as 

a sum 

    = 1 + ... + k,    i in Wi. 

If W1,..., Wk are independent, then that expression for  is unique; for if 

    = 1 + ... + k,   i in Wi 

 

then 0 = (1 – 1) + ... + (k – k), hence i – i = 0, i = 1,..., k. Thus, 

when W1,..., Wk are independent, we can operate with the vectors in W 

as k-tuples (1,..., k), i in Wi, in the same way as we operate with 

vectors in R
k
 as k-tuples of numbers. 

14.2.2 Lemma: Let V be a finite-dimensional vector space. Let W1,..., 

Wk be subspaces of V and let W = W 1 + ... + Wk. The following are 

equivalent. 

 

(a) W1,..., Wk are independent. 

(b) For each j, 2  j  k, we have 

    Wj  (W1 + ... + Wj–1) = {0} 

(c) If i is an ordered basis for Wi, 1  i  k, then the sequence  = 

(1,..., k) is an ordered basis for W. 

Proof: Assume (a). Let  be a vector in the intersection Wj  (W1 + ... + 

Wj–1). Then there are vectors 1,..., j–1 with i in Wi such that  = 1 + 

... + j–1. Since 

     1 + ... + j–1 + (–) + 0 + ... + 0 = 0 

and since W1, ..., Wk are independent, it must be that 1 = 2 = ... = j–1 

=  = 0. 

Now, let us observe that (b) implies (a). Suppose 

   0 =  = 1 + ... + k,    i in Wi 
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Let j be the largest integer i such that i  0. Then 

 

   0 =  = 1 + ... + j,    j  0. 

Thus j = –1 – ... – j–1 is a non-zero vector in Wj  (W1 + ... + Wj–1). 

Now that we know (a) and (b) are the same, let us see why (a) is 

equivalent to (c). Assume (a).  

Let i be basis for Wi, 1  i  k, and let  = (1,..., k). Any linear 

relation between the vectors in  will have the form 

      1 + ... + k = 0 

where i is some linear combination of the vectors in i. Since W1,.., 

Wk are independent, each i is 0. Since each i is independent, the 

relation we have between the vectors in  is the trivial relation. If any 

(and hence all) of the conditions of the last lemma hold, we say that the 

sum W = W1 + ... + Wk is direct or that W is the direct sum of W1,..., 

Wk and we write 

W = W1    Wk 

In the literature, the reader may find this direct sum referred to as an 

independent sum or the interior direct sum of W1,..., Wk. 

Example 1: Let V be a finite-dimensional vector space over the field F 

and let {1,..., n} be any basis for V. If Wi is the one-dimensional 

subspace spanned by i, then V = W1    Wn. 

Example 2: Let n be a positive integer and F a subfield of the complex 

numbers, and let V be the space of all n × n matrices over F. Let W1 be 

the subspace of all symmetric matrices, i.e., matrices A such that A
t
 = A. 

Let W2 be the subspace of all skew-symmetric matrices, i.e., matrices A 

such that A
t
 = –A. Then V = W1  W2. If A is any matrix in V, the 

unique expression for A as a sum of matrices, one in W1 and the other in 

W2, is 
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Example 3: Let T be any linear operator on a finite-dimensional space 

V. Let c1,.., ck be the 

distinct characteristic values of T, and let Wi be the space of 

characteristic vectors associated withthe characteristic value ci. Then 

W1,..., Wk are independent. In particular, if T is diagonalizable, then V = 

W1    Wk. 

14.2.3 Definition: If V is a vector space, a projection of V is a linear 

operator E on V such that E
2
 = E. Suppose that E is a projection. Let R 

be the range of E and let N be the null space of E. 

1. The vector  is in the range R if and only if E = . If  = E, then E 

= E2 = E = . 

Conversely, if  = E, then (of course)  is in the range of E. 

2. V = R  N. 

3. The unique expression for  as a sum of vectors in R and N is  = E 

+ ( – E). 

From (1), (2), (3) it is easy to see the following. If R and N are subspaces 

of V such that V = R  N, there is one and only one projection operator 

E which has range R and null space N. That operator is called the 

projection on R along N. 

Any projection E is (trivially) diagonalizable. If {1,..., r} is a basis for 

R and {r+1,..., n} a basis for N, then the basis  = {1,..., n} 

diagonalizes E. 

 

 

 

 

where I is the r × r identity matrix. That should help explain some of the 

terminology connected with projections. The reader should look at 

various cases in the plane R
2
 (or 3-space, R

3
), to convince himself that 

the projection on R along N sends each vector into R by projecting it 

parallel to N. 

Projections can be used to describe direct-sum decompositions of the 

space V. For, suppose  V = W1    Wk. For each j we shall define 

an operator Ej on V. Let  be in V, say  = 1 + + k with i in Wi. 
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Define Ej = j. Then Ej is a well-defined rule. It is easy to see that Ej is 

linear, that the range of Ej is Wj, and that E2 j = Ej. The null space of Ej 

is the subspace 

 (W1 +  + Wj–1 + Wj+1 +  + Wk) 

 

for, the statement that E j = 0 simply means j = 0, i.e., that  is 

actually a sum of vectors from the spaces Wi with i  j. In terms of the 

projection Ej we have  

                    = E1 +  + Ek 

for each  in V. What (1) says is that 

      I = E1 +  + Ek 

Note also that if i  j, then EiEj = 0, because the range of Ej is the 

subspace Wj which is contained in the null space of Ei. We shall now 

summarize our findings and state and prove a converse. 

Theorem 14.2.4: If V = W1    Wk, then there exist k linear 

operators E1,..., Ek on V such that 

(i) each Ei is a projection    
      

(ii) EiEj = 0, if i  j; 

(iii) I = E1 +  + Ek; 

(iv) the range of Ei is Wi. 

 

Conversely, if E1,..., Ek are k linear operators on V which satisfy 

conditions (i), (ii) and (iii), and if we let Wi be the range of Ei, then  

     V = Wi    Wk. 

Proof: We have only to prove the converse statement. Suppose E1,..., Ek 

are linear operators on V which satisfy the first three conditions, and let 

Wi be the range of Ei. Then certainly 

     V = W1 +  + Wk; 

 for, by condition (iii) we have 

      = E1 +  + Ek 

for each  in V, and Ei is in Wi. This expression for  is unique, 

because if 

      = 1 +  + k 

with i in Wi, say i = Eii, then using (i) and (ii) we have 
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This shows that V is the direct sum of the W 

Check your progress 

1. What is direct sum decomposition? 

 

2. Define Projection 

 

 

 

14.3 INVARIANT DIRECT SUMS 
 

Theorem 14.3.1: Let T be a linear operator on the space V, and W1,..., 

Wk and E1,..., Ek .Then a necessary and sufficient condition that each 

subspace Wi be invariant under T is that T commutes with each of the 

projections Ei, i.e.,  

    TEi = EiT,      i = 1,..., k 

Proof: Suppose T commutes with each Ei. Let  be in Wj. Then Ej = , 

and 

    T = T(Ej) 

         = Ej(T) 

which shows that T is in the range of Ej, i.e., that Wj is invariant under 

T. Assume now that each Wi is invariant under T. We shall show that 

TEj = EjT. Let  be any vector in V. Then 

      = E1 + ... + Ek 
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     T = TE1 + ... + TEk 

Since Ei is in Wi, which is invariant under T, we must have T(Ei) = 

Eii for some vector i. Then 

 

 

 

 

 

 

 

 

 

  = TEj 

This holds for each  in V, so EjT = TEj. 

We shall now describe a diagonalizable operator T in the language of 

invariant direct sum decompositions (projections which commute with 

T). This will be a great help to us in understanding some deeper 

decomposition theorems later. The description which we are about to 

give is rather complicated, in comparison to the matrix formulation or to 

the simple statement that the characteristic vectors of T span the 

underlying space. But, we should bear in mind that this is our first 

glimpse at a very effective method, by means of which various problems 

concerned with subspaces, bases, matrices, and the like can be reduced to 

algebraic calculations with linear operators. With a little experience, the 

efficiency and elegance of this method of reasoning should become 

apparent. 

Theorem 14.3.2: Let T be a linear operator on a finite-dimensional space 

V. If T is diagonalizable and if c1,..., ck are the distinct characteristic 

values of T, then there exist linear operators E1,..., Ek on V such that 

 

(i) T = c1E1 + ... + ckEk; 

(ii) I = 'E1 + ... + Ek; 

(iii) EiEj = 0, i  j; 

(iv)   
  Ei (Ei is a projection); 

(v) the range of Ei is the characteristic space for T associated with ci. 



Notes 

107 

Conversely, if there exist k distinct scalars c1,..., ck and k non-zero linear 

operators E1,..., Ek which satisfy conditions (i), (ii), and (iii), then T is 

diagonalizable, c1,..., ck are the distinct characteristic values of T, and 

conditions (iv) and (v) are satisfied also. 

Proof: Suppose that T is diagonalizable, with distinct characteristic 

values c1,..., ck. Let Wi be the space of characteristic vectors associated 

with the characteristic value ci. As we have seen, V = W1 ...  Wk 

Let E1,...,Ek be the projections associated with this decomposition. Then 

(ii), (iii), (iv) and (v) are satisfied. To verify (i), proceed as follows. For 

each  in V, 

     = E1 + ... + Ek 

and so 

    T = TE1 + ... + TEk  

          = c1E1 + ... + ckEk 

In other words, T = c1E1 + ... + ckEk. 

Now suppose that we are given a linear operator T along with distinct 

scalars ci and non-zero operators Ei which satisfy (i), (ii) and (iii). Since 

EiEj = 0 when i  j, we multiply both sides of I = E1 + ... + Ek by Ei and 

obtain immediately   
  Ei. Multiplying T = c1E1 + ... + ckEk by Ei, we 

then have TEi = ciEi, which shows that any vector in the range of Ei is in 

the null space of (T –ciI). Since we have assumed that Ei  0, this proves 

that there is a non-zero vector in the null space of (T – ciI), i.e., that ci is 

a characteristic value of T. Furthermore, the ci are all of the characteristic 

values of T; for, if c is any scalar, then 

   T – cI = (c1 – c)E1 + ... + (ck – c)Ek 

so if (T – cI) = 0, we must have (ci – c)Ei = 0. If  is not the zero 

vector, then Ei   0 for some i, so that for this i we have ci – c = 0. 

Certainly T is diagonalizable, since we have shown that every non-zero 

vector in the range of Ei  is a characteristic vector of T, and the fact that I 

= E1 + ... + Ek shows that these characteristic vectors span V. All that 

remains to be demonstrated is that the null space of (T – ciI) is exactly 

the range of Ei. But this is clear, because if T = ci, then 

 

Hence  
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    (cj – ci)Ej = 0   for each j  

and then  

   Ej = 0    j  I  

 

Since  = E1 + ... + Ek, and Ej = 0 for j  i, we have  = Ei, which 

proves that  is in the range of Ei. One part for a diagonalizable operator 

T, the scalars c1,..., ck and the operators E1,..., Ek are uniquely 

determined by conditions (i), (ii), (iii), the fact that the ci are distinct, and 

the fact that the Ei are non-zero. One of the pleasant features of the 

decomposition T = c1E1 + ... + ckEk is that if g is any polynomial over the 

field F, then 

                 g(T) = g(c1)E1 + ... + g(ck)Ek. 

To see how it is proved one need only compute T
r 
for each positive 

integer r. For example, 

 

 

 

 

 

 

 

 

 

 

g(A) is simply the diagonal matrix with diagonal entries g(A11), ..., 

g(Ann). We should like in particular to note what happens when one 

applies the Lagrange polynomials corresponding to the scalars c1,..., ck: 

 

 

 

We have pj(ci) = ij, which means that 
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Thus the projections Ej not only commute with T but are polynomials in 

T. Such calculations with polynomials in T can be used to give an 

alternative proof of Theorem 2 of unit 14, which characterized 

diagonalizable operators in terms of their minimal polynomials. The 

proof is entirely independent of our earlier proof. 

 

If T is diagonalizable, T = c1E1 + ... + ckEk, then  

     g(T) = g(c1)E1 + ... + g(ck)Ek 

 

for every polynomial g. Thus g(T) = 0 if and only if g(ci) = 0 for each i. 

In particular, the minimal polynomial for T is 

      p = (x – c1) ... (x – ck) 

Now suppose T is a linear operator with minimal polynomial p = (x – c1) 

... (x – ck), where c1,..., ck are distinct elements of the scalar field. We 

form the Lagrange polynomials 

 

 

 

So that pj(ci) = ij and for any polynomial g of degree less than or equal 

to (k – 1) we have 

     g = g(c1)p1 + ... + g(ck)pk 

 

Taking g to be the scalar polynomial 1 and then the polynomial x, we 

have 

 

You will note that the application to x may not be valid because k may 

be 1. But if k = 1, T is a scalar multiple of the identity and hence 

diagonalizable). Now let Ej = pj(T). From (2) we have 
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Observe that if i  j, then pi pj is divisible by the minimal polynomial p, 

because pi pj contains every (x – cr) as a factor. Thus 

     EiEj = 0, i  j ...(4) 

 

We must note one further thing, namely, that Ei  0 for each i. This is 

because p is the minimal polynomial for T and so we cannot have pi(T) = 

0 since pi has degree less than the degree of p. This last comment, 

together with (3), (4), and the fact that the ci are distinct enables us to 

apply Theorem 2 to conclude that T is diagonalizable. 

 

14.4 THE PRIMARY DECOMPOSITION 

THEOREM 
 

Theorem 14.41 (Primary Decomposition Theorem): Let T be a linear 

operator on the finite dimensional vector space V over the field F. Let p 

be the minimal polynomial for T, 

 

 

where the pi are distinct irreducible monic polynomials over F and the ri 

are positive integers. Let Wi be the null space of pi     , i = 1,..., k. Then 

 

(i) V = W1  ...  Wk; 

(ii) each Wi is invariant under T; 

(iii) if Ti is the operator induced on Wi by T, then the minimal 

polynomial for Ti is   
  . 

Proof: The idea of the proof is this. If the direct-sum decomposition (i) is 

valid, how can we get 

hold of the projections E1,..., Ek associated with the decomposition? The 

projection Ei will be the identity on Wi and zero on the other Wj.  

We shall find a polynomial hi such that hi(T) is the identity on Wi and is 

zero on the other Wj, and so that h1(T) + ... + hk(T) = I, etc. 

For each i, let 
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Since p1,..., pk are distinct prime polynomials, the polynomials f1,..., fk 

are relatively prime. Thus there are polynomials g1,..., gk such that 

 

 

 

Note also that if i  j, then fi fj is divisible by the polynomial p, because 

fi fj contains each pm rm as a factor. We shall show that the polynomials 

hi = fi gi behave in the manner described in the firstparagraph of the 

proof. 

Let Ei = hi(T) = fi(T)gi(T). Since h1 + ... + hk = 1 and p divides fi fj for i 

 j, we have 

    E1 + ... + Ek = I 

    EiEj = 0,   if i  j 

Thus the Ei are projections which correspond to some direct sum 

decomposition of the space V. 

We wish to show that the range of Ei is exactly the subspace Wi. It is 

clear that each vector in the range of Ei is in Wi, for if  is in the range 

of Ei, then  = Ei and so 

 

 

 

 

 

because p
ri
fi gi is divisible by the minimal polynomial p. Conversely, 

suppose that  is in the null space of pi      If j  i, then fj gj is divisible 

by piri and so fj(T)gj(T) = 0, i.e., Ej = 0 for j  i. But then it is 

immediate that Ei = , i.e., that  is in the range of Ei. This completes 

the proof of statement (i). 

It is certainly clear that the subspaces Wi are invariant under T. If Ti is 

the operator induced on Wi by T, then evidently pi     = 0, because by 

definition pi(T)ri is 0 on the subspace Wi. This shows that the minimal 

polynomial for Ti divides   
   . Conversely, let g be any polynomial such 

that g(Ti) = 0. Then g(T)fi(T) = 0. Thus gfi is divisible by the minimal 

polynomial p of T, i.e.,   
  fi  divides g fi. It is easily seen that piri divides 

g. Hence the minimal polynomial for Ti is   
   . 
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Corollary 14.4.2: If E1,..., Ek are the projections associated with the 

primary decomposition of T, then each Ei is a polynomial in T, and 

accordingly if a linear operator U commutes with T then U commutes 

with each of the Ei, i.e., each subspace Wi is invariant under U. 

In the notation of the proof of Theorem 1, let us take a look at the special 

case in which the minimal polynomial for T is a product of first degree 

polynomials, i.e., the case in which each pi 

is of the form pi = x – ci. Now the range of Ei is the null space Wi of (T 

– ciI)ri. Let us put D = c1E1 + ... + ckEk . By Theorem 2 of unit 17, D is a 

diagonalizable operator which we shall call the 

diagonalizable part of T. Let us look at the operator N = T – D. Now 

Now  

 

 

 

 

 

 

The reader should be familiar enough with projections by now so that he 

sees that 

    N
2 
= (T – c1I)

2
E1 + ... + (T – ckI)

2
Ek 

 

and in general that 

     N
r 
= (T – c1I)

r
E1 + ... + (T – ckI)

r
Ek 

 

When r  ri for each i, we shall have Nr = 0, because the operator (T – 

ciI)r will then be 0 on the range of Ei. 

Definition14.4.3: Let N be a linear operator on the vector space V. We 

say that N is nilpotent if there is some positive integer r such that Nr = 0. 

Theorem 14.4.4: Let T be a linear operator on the finite-dimensional 

vector space V over the field F. Suppose that the minimal polynomial 

forT decomposes over F into a product of linear polynomials. Then there 

is a diagonalizable operator D on V and a nilpotent operator N on V such 

that 

(i) T = D + N, 
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(ii) DN = ND 

The diagonalizable operator D and the nilpotent operator N are uniquely 

determined by (i) and 

(ii) and each of them is a polynomial in T. 

Proof: We have just observed that we can write T = D + N where D is 

diagonalizable and N is nilpotent, and where D and N not only commute 

but are polynomials in T. Now suppose that we also have T = D‘ + N‘ 

where D‘ is diagonalizable, N‘ is nilpotent, and D‘N‘ = N‘D‘. We shall 

prove that D = D‘ and N = N‘. 

Since D‘ and N‘ commute with one another and T = D‘ + N‘, we see that 

D‘ and N‘ commute with T. Thus D‘ and N‘ commute with any 

polynomial in T; hence they commute with D and with N. 

Now we have 

    D + N = D‘ + N‘ 

or 

    D – D‘ = N‘ – N 

and all four of these operators commute with one another. Since D and 

D‘ are both diagonalizable and they commute, they are simultaneously 

diagonalizable, and D – D‘ is diagonalizable. Since N and N‘ are both 

nilpotent and they commute, the operator (N‘ – N) is nilpotent; for, using 

the fact that N and N‘ commute 

 

and so when r is sufficiently large every term in this expression for (N‘ – 

N)r will be 0. (Actually, a nilpotent operator on an n-dimensional space 

must have its nth power 0; if we take r = 2n above, that will be large 

enough. It then follows that r = n is large enough, but this is not obvious 

from the above expression.) Now D – D‘ is a diagonalizable operator 

which is also nilpotent. Such an operator is obviously the zero operator; 

for since it is nilpotent, the minimal polynomial for this operator is of the 

form xr for some r  m; but then since the operator is diagonalizable, the 

minimal polynomial cannot have a repeated root; hence r = 1 and the 

minimal polynomial is simply x, which says the operator is 0. Thus we 

see that D = D‘ and N = N‘. 
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Corollary 14..5 : Let V be a finite-dimensional vector space over an 

algebraically closed field F, e.g., the field of complex numbers. Then 

every linear operator T on V can be written as the sum of a 

diagonalizable operator D and a nilpotent operator N which commute. 

These operators D and N‘ are unique and each is a polynomial in T. 

From these results, one sees that the study of linear operators on vector 

spaces over an algebraically closed field is essentially reduced to the 

study of nilpotent operators. For vector spaces over non-algebraically 

closed fields, we still need to find some substitute for characteristic 

values and vectors. It is a very interesting fact that these two problems 

can be handled simultaneously and this is what we shall do in the next 

units. 

In concluding this section, we should like to give examples, which 

illustrate some of the ideas of the primary decomposition theorem. We 

have chosen to give it at the end of the section since it deals with 

differential equations and thus is not purely linear algebra 

Example: Prove that the matrix A 

 

 

 

 

is nilpotent. Find its index of nilpotency. 

Proof: 

 

 

So A
3
 = 0. Hence A is nilpotent of the index of nilpotence 3. Notice that 

A
2
  0. (matrix)  Also the characteristic polynomial of A is p(x) = x

3
. 
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Check your progress 

3. Explain invariant Sum 

 

4. What is nilpotent? 

 

 

14.5 LET’S SUM UP 
 

In this unit the importance is given to the ideas of invariant subspaces of 

a vector space V 

for a linear operator T. The vector space V is decomposed into a set of 

linear invariant subspaces. The sum of the bases vectors of the invariant 

subspaces defines the basis vectors of the vector space V. 

The primary decomposition theorem is based on the fact that the minimal 

polynomial of 

the linear operator is the product of the irreducible. This helps in finding 

the projection operates which are polynomials in T. The direct 

decomposition of the vector space V in terms of the invariant subspaces 

helps in inducing linear operators Ti on these subspaces Wi. 

The induced operator Ti on Wi by T has the minimal polynomial as well 

as due to the factorisation of the minimal polynomial of T. 

14. 6 KEYWORDS 
 

5. Skew-symmetric Matrices: Skew-symmetric matrices, i.e., matrices 

A such that At = –A 

6. Subspaces: These subspaces will be taken as independent subspaces 

of the vector space V and after finding the independent basis of each 

independent subspace the ordered basis of the whole space will be 

constructed.  

7. Projection Operator: The projection operator E has the property that 

E2 = E so its characteristic 

values can be equal to 0 and unit. 
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8. Restriction: When the finite space V is decomposed into the direct 

sum of the invariant subspaces 

the linear operator induces a linear operator by the process known as 

restriction. 

9. The Lagrange Polynomials: Help us to find the projection operators 

for any linear operator T in 

terms of the matrix representing T and its characteristic values. 

10. Invariant Sub-spaces: If a vector  in V is such that  and T are in 

the subspace W of V then W 

is invariant subspace of V over the field F. 

11. Nilpotent Transformation: A nilpotent transformation N on the vector 

space V represented by 

a matrix A is such that AK = 0 for some integer K and AK–1  0. 

Here K is the index of nilpotency. 

12. Projection Operators: The projection operator Ei acting on the vector 

i gives Ei = i for the 

subspace Wi and gives zero for other. Also E E i i 2  and EiEj = 0 

for i  j 

 

14.7 QUESTION FOR REVIEW 
 

1. Let V be a finite dimensional vector space and W1 is any subspace of 

V. Prove that there is a subspace W2 of V such that V = W1  W2. 

2. Let V be a finite dimensional vector space and let W1,... WK be 

subspaces of V such that V = W1 + W2 + ... + Wk and dim V = dim W1 + 

... + WK. Prove that V = W1  W2  ...  Wk. 

3. Let T be the diagonalizable linear operator on R3 which is represented 

by the matrix 

 

use the Lagrange polynomials to write 

the representing matrix A in the 
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form A = E1 + 2E2, E 

1 + E2 = I, E1E2 = 0. Where I is a unit matrix and 0 is zero matrix. 

4. Show that the linear operator T on R
3
 represented by the matrix 

is nilpotent. 

 

 

 

14.8 SUGGESTED READINGS 
 K. Hauffman and R. Kunz, Linear Algebra, Pearson Education 

(INDIA), 2003. 

 G. Strang, Linear Algebra And Its Applications, 4th Edition, 

Brooks/Cole, 2006. 

 S. Lang, Linear Algebra, Springer, 1989. 

 David S. Dummit and Richard M. Foote, Abstract Algebra (3e), John 

Wiley and Sons. 

 R. Gallian Joseph, Contemporary Abstract Algebra, Narosa Publishing 

House. 

 Thomas Hungerford, Algebra, Springer GTM. 

 I.N. Herstein, Topics in Abstract Algebra, Wiley Eastern Limited.  

 D.S. Malik, J.M. Mordesen, M.K. Sen, Fundamentals of Abstract 

Algebra, The McGraw-Hill Companies, Inc. 

14.9 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. Provide definition & example-- 14.1.1 

2. Provide definition and explanation – 14.1.3 

3. Provide statement of theorem & proof – 14.2.1 

4. Provide definition-- 14.3.3. 


